
 Advanced search

Linux Journal Issue #129/January 2005

Features

Staying Current with Your Distribution's Security Updates by Jeremy
Turner

Many attacks go after software for which a fix is already
available. Get the new version working fast.

Point-and-Click E-Mail Crypto by Roy Hoobler
These tools make encrypted mail almost as easy as the easily
snoopable kind.

Networking in NSA Security-Enhanced Linux by James Morris
SELinux is already in some cutting-edge distributions, so it's
time to learn it.

Encrypt Your Root Filesystem by Mike Petullo
Get high-grade security for all your data even when you can't
lock up the hardware.

Indepth

How I Feed My Cats with Linux by Chris McAvoy
Why stay home to feed the cats when you have the Internet, a
Linux box and some handy hardware?

Application Defined Processors by Dan Poznanovic
Here's how a general-purpose Linux system gets a speed boost
from reconfigurable logic.

Finding Stubborn Bugs with Meaningful Debug Info by John Goerzen
When a user reports a bug you can't duplicate, make the
program help diagnose itself.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7616.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7764.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7743.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7403.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7720.html

Using Webmin—By the Book by Frank Conley
This Web-based tool lets you manage your system and keep a
log of other sysadmins' actions.

Counting with uniq by Brian K. Tanaka
Tame your server logs and other big data files with these
command-line tools.

Embedded

A Memory-Efficient Doubly Linked List by Prokash Sinha
Use this twist on a standard data structure to trade a little time
to save what could be a lot of space.

Toolbox

At the Forge Bloglines Web Services by Reuven M. Lerner
Kernel Korner The Linux Test Project by Nigel Hinds
Cooking with Linux Forgotten Security by Marcel Gagné
Paranoid Penguin Taking a Risk-Based Approach to Linux Security
by Mick Bauer

Columns

Linux for Suits Grass Roots vs. Giant Roars by Doc Searls
EOF 441 Reasons to Go Linux by Brooke Partridge

Reviews

Network Security Hacks by Alex Weeks
HP Compaq nx5000 by Don Marti
Open Source Licensing: Software Freedom and Intellectual Property
Law by Don Marti

Departments

From the Editor
Letters
upFRONT
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7425.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7396.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/6828.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7828.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7445.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7853.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7829.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7830.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7852.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7682.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7845.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7851.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7851.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7844.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7833.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7831.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7842.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/7843.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Staying Current with Your Distribution's Security Updates

Jeremy Turner

Issue #129, January 2005

Keeping software up to date is the first lesson for beginning Linux
administrators. Jeremy covers how to do it with the most popular update tools,
click by click.

One of the key elements of making and keeping Linux a prime-time player in
your desktop or server environment is ensuring that it is current with security
patches. You take measures to address security at the network and hardware
levels, but it takes only one security hole to compromise your entire
environment. All users, whether they are commercial, nonprofit or home users,
must know how to update their systems and applications, and they must do so
regularly.

Two steps are key to keeping your system clean: knowing when to update and
actually performing the updates. The first can be solved by monitoring security
bulletin mailing lists for your specific distribution. The second can be solved in
numerous ways through graphical and command-line tools. Some distributions
also include auto-upgrading software utilities that can help you monitor your
system.

I admit that I use the terms update and upgrade interchangeably when
referring to moving from one version of a software package to another. These
essentially mean the same thing. You also want to be careful when updating
software so you do not install a version of a package you did not intend to.
Development versions of packages usually carry a different version series. If the
version differs by too much, check for a different update.

This article investigates both command-line and GUI tools for keeping your
Linux system up to date. We specifically look at Debian 3.0 (Woody), Mandrake
10.0, SuSE 9.1 and Fedora Core 2.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Knowing When to Update

So how do you know when you should update? One good method is to
subscribe to the security bulletins that your distribution provides. The on-line
Resources provide URLs for the distributions covered in this article here and
their respective security mailing lists. These usually are low-traffic mailing lists
to alert you of security-related patches or updates. They also usually provide
direct links for downloading the updated packages and MD5 sums to ensure
you have a clean package. You manually can install a package this way. You also
might need to grab any dependencies, if necessary.

Another method for knowing when to update is to use a script or application
that polls for any updates. SuSE 9.1 and Fedora Core 2 include easy methods
for automatically updating your current software with GUI tools. Debian and
Mandrake also both have easy GUI tools and can be scripted to download
packages in the middle of the night, letting you upgrade later.

I must offer a word of caution on upgrading software when no one is present to
monitor the process. For instance, I heavily configure the Apache Web server.
When I upgrade, it always asks me if I want to replace my config files. I usually
run diff to see what the changes will do, but I rarely let them overwrite my
config file. Make sure you note any changes in the software versions that are
upgrading if you have any critical applications. Always back up your critical
application config files.

 RPM-Based Distributions

The RPM command-line tool is a manual and dependable method for
upgrading your RPM security update. The rpm command has a lot of switches
for various options, but for upgrading packages, you should run:

rpm -Uv package.rpm

For the RPM file, you can specify a local filename, or even an FTP or HTTP
location. If your security mailing list includes direct URLs for package updates,
command-line updating is very simple. For more information on the rpm
command-line tool, check out the RPM Web site or the man page.

 Debian-Based Distributions

Debian and other Debian-based distributions use dpkg as their package
management system. It used to stand for Debian GNU/Linux package manager.
The dpkg FAQ page states that it no longer stands for anything, because it is
used in non-Debian and non-Linux environments. This package manager does
the mid-level work for APT, the Advanced Packaging Tool, and GUI tools such as

Synaptic. Much like RPM, dpkg includes a plethora of command-line switches,
but we focus on the simple upgrade switch:

dpkg -i package.deb

The -i switch instructs dpkg to install the package. If a prior version of the
package exists, dpkg removes the prior version and installs the newer version.
Unlike rpm, dpkg requires wget or curl to download the package before
installing.

 Debian 3.0 (Woody)

Advanced Package Tool (APT) is where you probably will do most of your
command-line package management in Debian. APT uses a list of repositories
with available packages. If there is a newer package version in the repository's
Package list, APT downloads the package and hands the process over to dpkg.
First, make sure you have the security update source in your sources.conf file. It
should read:

deb http://security.debian.org/ stable/updates main

Instead of the word stable, you might have woody instead, but either will do.
After editing the sources.conf file, you also need to update your available
package list. To update and then upgrade them, run the apt-get two-step:

apt-get update
apt-get upgrade

This upgrades only packages that do not require modifications to other
packages. To upgrade packages that do require some sort of dependencies,
run:

apt-get update
apt-get -u dist-upgrade

The -u switch shows exactly which packages will be upgraded, newly installed or
removed. You can set these lines to run from the crontab and have your
machine download, but not install, the latest packages you need. A command
to put in your crontab file might look like:

(apt-get update && apt-get -dy upgrade) \
| mail -s "`hostname` update" root

This command downloads the list of the latest packages and, if successful,
downloads the packages that need to be updated. It sends the results by e-mail

to the root user. Substitute your user name or e-mail address as necessary.
When you receive e-mail notifying you that there are updates, you can run:

apt-get upgrade

This installs the previously downloaded packages allowing you to be present at
the console or terminal. Some package upgrades require additional user input,
so it may not be wise to run a completely automated upgrade solution.

Available on the GUI side for Debian users, Synaptic is a complete front end to
dpkg. To run Synaptic, go to the Debian menu in your desktop environment
and select Apps→System→Synaptic Package Manager. Synaptic works much the
same as APT. To update your list of available packages, click the Reload button
at the top left of the window. A window list of mirror locations updates you on
the status of the package list download. When Synaptic finishes downloading
the package lists, you can view all available upgrades. Packages that need to be
upgraded have a green box and an arrow pointing up. Newly available
packages have a yellow star on the box. Installed packages have a green box,
and not installed packages have a white box.

To download and install all package updates, click the Apply button. You then
are prompted with a window detailing which packages will be upgraded,
installed, kept back or removed (Figure 1). Kept back means that the package
would require other dependencies that were not stated specifically. Clicking
Apply begins downloading the updates. Following the download process, the
updates will install in a terminal-like text box, allowing you to answer questions
if needed. When finished, click the Close button (Figure 2).

https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f1.large.jpg

Figure 1. Synaptic Showing the Applications to Be Modified

Figure 2. Synaptic after All Upgrades Have Been Performed

https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f2.large.jpg

 Mandrake 10.0

When installing Mandrake 10.0, one of the final steps before the first login is to
check for any critical updates. If you are installing this distribution from scratch,
this would be a great step. However, what do you do now that Mandrake is
installed, and you need a patch for a security hole?

Mandrake 10.0 users have a nice GUI package management application called
rpmdrake. You can find it by clicking on the KDE star menu and selecting
System→Configuration→Packaging→Mandrake Update. You also can run
rpmdrake as root on the command line. Answer a couple of questions, and
then you are presented with a list of packages that need updating due to
security updates (Figure 3). To update all of them, click in the box on the All line,
then press the Install button, and grab your favorite beverage!

Figure 3. rpmdrake's List of Available Package Upgrades

After downloading and installing all updates, you are presented with a dialog
box letting you know everything has been installed. It's that easy.

The command-line urpmi package was installed with my stock installation of
Mandrake 10.0. urpmi acts much like APT, allowing you to use multiple sources
to update packages. These repositories can be accessed by CD-ROM, a local

https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f3.large.jpg

RPM directory or an FTP or HTTP Internet source. For our purpose of installing
security updates, we want to run something like the following command:

urpmi.addmedia --update updates \
ftp://example.com/Mandrake10.0/RPMS \
with ../base/hdlist.cz

This adds security updates from an FTP mirror to your list of sources. You need
to substitute the ftp:// URL with a real mirror. The Web site Easy urpmi gives
you a nice Web interface to choose your nearest mirror, your architecture and
from which source pools you'd like to download updates.

To update the list of available packages and then install all package updates, do
the urpmi two-step:

urpmi.update -a
urpmi --auto-select

You then are prompted to install the updated packages and any dependencies,
if necessary.

 SuSE 9.1

SuSE 9.1 has a similar method for installing updates by using the YaST2 Online
Update (YOU) GUI tool. You can find this by clicking on the SuSE icon, then
System→YaST. After entering your root password, click on Software and then
Online Update. You can choose your installation source or add a new server
manually (Figure 4). Additionally, you can configure YOU to download and/or
install updates automatically at a specified time each day. Clicking Next
downloads information that tells you what packages need to be updated. After
this list is updated, we are presented with the list of packages, a patch
description and disk usage (Figure 5). In the list of patches, red lines denote
security updates, blue lines denote recommended updates and black lines are
optional updates. To perform the upgrade, click Accept. After the updates are
completed, click Finish, which configures a few system services. In addition to
the YOU system, you can use the rpm command from the command line.

Figure 4. YaST2 Online Update's Mirror Selection Process

Figure 5. YaST2 Online Update's List of Available Package Upgrades

 Fedora Core 2

The Red Hat Update Agent, up2date, has been around for several Red Hat
versions and is present in Fedora Core 2. To check for new software updates in
Fedora Core 2, right-click on the red exclamation point in the system tray and
choose Check for updates. To download and install the latest updates, right-

https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7832f5.large.jpg

click on the red exclamation point and choose Launch up2date. You can choose
the defaults. The first time you run up2date, you are asked whether you want
to install the Red Hat GPG key signature. I chose yes on my system.

In the Channels menu, you can subscribe to two channels or repositories where
updates are kept, fedora-core-2 and updates-released-fc2. Channels in up2date
are similar to the repository in APT or urpmi. You are asked to note any
packages you want to skip. The package already listed for me was a kernel
upgrade. Clicking Forward gives you a list of available software updates (Figure
6). To select all updates, click the check box next to Select all packages.

Figure 6. Up2date's List of Available Package Updates

Clicking Forward starts retrieving packages. Again, a break with your favorite
beverage will do nicely at this point. When the download process is finished,
click Forward to start the installation process. When the installation process is
finished, you are given a nice summary of exactly what packages were installed
and their versions (Figure 7).

Figure 7. Up2date All Finished Downloading and Installing

Fedora Core 2 also is based on the RPM system, which allows you to use the
rpm command at a terminal.

Another package management front end that has received notoriety is the
Yellow dog Updater Modified, or Yum. Yum is much like APT, but it has several
differences that the author explains on the Yum Web site. In essence, Yum acts
like urpmi or APT in dealing with package repositories, and then it hands the
actual package installation off to RPM. The anaconda installer uses Python
bindings for RPM access, so you can count on the Python support staying
around.

 Conclusion

There's a saying in baseball: “You're only as good as your last at-bat.” The
computer application of this principle is that your system is only as secure as
your last update. A fancy network firewall and a magnetic-stripe server-room
door key are good security steps, but running an outdated version of Apache or
OpenSSH can bring your systems to a halt if you don't keep your Linux systems
up to date.

Resources for this article: /article/7862.

Jeremy Turner has been a Linux user for more than five years and has a
passion for helping users learn open-source software. He hacks PHP, sings first

https://secure2.linuxjournal.com/ljarchive/LJ/129/7862.html

tenor, watches too much baseball and checks his e-mail regularly
(jeremy@linuxwebguy.com).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jeremy@linuxwebguy.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Point-and-Click E-Mail Crypto

Roy Hoobler

Issue #129, January 2005

Make secure e-mail a habit with easy GUI tools to send, receive and
authenticate encrypted messages.

I use a laptop with Linux, and I don't want people reading my mail if the laptop
falls into the wrong hands. I've also had my e-mail monitored, and I didn't want
the network administrator to view anything personal. GnuPG offers good
encryption and is available for all. With KDE's KGPG and KMail, things are even
easier. This article explains how to use KGPG for e-mail and file encryption. It
may get a little complicated, but by following this article, you should have
everything up and running within an hour or so. If you have any questions,
please write me—try out your new secure e-mail if you like. My address is in
this article.

 What Is GnuPG?

Gnu Privacy Guard (GnuPG) is an implementation of the OpenPGP standard.
These standards grew out of the work done by Philip Zimmerman and his PGP
(Pretty Good Privacy) software. PGP has been around since 1991 and is now
proprietary software. However, OpenPGP standards were established in 1997,
and version 1.0 of GnuPG appeared in 1999.

GnuPG is all done through the command line and is quite complex. Tools to
simplify it for you are available; this article covers KDE, KGPG and KMail.

GnuPG and PGP are compatible. For those already using PGP, if you use the
IDEA algorithm, there is some more work involved with switching to GnuPG;
otherwise, there shouldn't be a problem. If you need to communicate with or
replace PGP 2.x, see the on-line Resources for this article.

It takes discipline to implement and enforce privacy and security policies for an
organization. I was in a Military Intelligence unit back in my Army days, and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

security was taken very seriously. If policies were not followed, there were
serious consequences. For any organization, someone should be appointed as
a security manager and given the proper authority to make sure guidelines are
followed. Just like any good practice (such as using CVS for code), once people
are trained to encrypt sensitive information, it will become standard.
Depending on the size of the organization, it could take anywhere from a week
to a month of checking and training to get the policy in place.

 Creating Your Own Key

As an example, I'm going to encrypt a message and send it from my work
account to my rhoobler@comcast.net mail account. Both accounts are using
KMail. Next, I send an encrypted reply back to my work account. First, however,
I set up keys for the comcast.net account, so I have somewhere to send it.

Once you install KGPG, you should have an icon on the system tray. If not, you
can launch it from a terminal by typing KGPG -k. The -k option is important to
bring up the user interface—the Key Management tool (Figure 1). Without the -
k option, KGPG runs as a service in the background, and the system tray icon
appears. Clicking on the system tray icon brings up the the user interface.

Figure 1. Use the Key Management tool to browse GnuPG keys by name or e-mail address.

First, I make a private and public key pair for my comcast.net e-mail account.
Inside the Key Management program, select the Keys→Generate Key Pair menu
item, which brings up a rather simple dialog box. Selecting Expert Mode
launches GnuPG in a terminal. For now, enter your name, e-mail address and a
comment using the dialog window. Depending on your security policies, you
can set when keys expire as well.

The next step is entering a passphrase for GnuPG. This is very important. If you
forget this, you won't be able to read any messages, and KGPG prompts you for
a passphrase whenever you want to read anything. Then wait a few seconds for
GnuPG to make your keys for you. As a safety measure, I also suggest making a
revocation certificate (name the file something like rhooblerrev.asc). If your

https://secure2.linuxjournal.com/ljarchive/LJ/129/7616f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7616f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7616f1.large.jpg

system is ever stolen or compromised, you can send out this certificate to let
people know your public key is void.

That's it. Now we have a public and private key for rhoobler@comcast.net. Two
things are left: exporting the public key and optionally exporting the private
key. These keys are exported separately; for the public key, I name the file
rhoobler.asc and for the private key, rhooblerprivate.asc. Beware: if someone
gets hold of your private key and guesses your passphrase, the attacker can
read encrypted mail for you and cryptographically sign mail as you.

After exporting the private key and the revocation keys, burn them to a CD-
ROM and put it in a safe or a safe-deposit box, then delete the revocation
(rhooblerrev.asc) and private key (rhooblerprivate.asc) files from your hard
drive.

GnuPG keeps the following files in each user's .gnupg directory. All are read/
writable only by the user:

• gpg.conf: general GPG configuration.
• pubring.gpg: list of public keys.
• secring.gpg: list of secure (private keys).
• trustdb.gpg: database file that records who trusts whom.

For convenience, now I export the public key for rhoobler@comcast.net to a
default keyserver. Using the Key Management tool, select the key and right-
click, and then choose Export Public Key(s). Another simple dialog box comes
up with three options. I choose Default keyserver and then OK. The keyserver
can be configured in the Settings menu, but by default it is subkeys.pgp.net,
which always has worked for me. You also can export it to a file then e-mail it,
or upload the key to your Web site. There is nothing wrong with everyone
knowing your public key, but they should verify that it is yours (more about this
later). Having your public key means they can encrypt files that only you will be
able to open.

So, now we can encrypt files and send encrypted e-mails. But it works only if
you have someone to share this information with. For this article, I went to my
other workstation and set up another set of keys for my business e-mail
account, using the same set of steps.

The next step is to import the rhoobler@comcast.net public key by using the
Key Manager from the keyserver and selecting the globe icon or File→Key
Server Dialog from the menu. You can type in the e-mail address and import
the key. Before fully using the key, select it from the main dialog window then
select Keys→Sign Keys from the menu.

If I wanted to set up a large group, I could create my own keyserver, sign the
keys and then distribute them. Another approach is for people to e-mail their
keys to others, then meet in a physical location and have them verify and sign
each other's keys. This builds the web of trust. For example, I've signed Bill's
key and Bill has signed Kate's key. If I get mail from Kate, her key can be added
to my trust database.

Keys have a fingerprint, and if I am not sure whether a key is authentic, I can
look at the fingerprint and call the person to verify it. The fingerprint can be
found in the Key Manager by selecting the key and then selecting Edit Key from
the menu (Figure 2).

Figure 2. To check the authenticity of mail, simply call the sender and check the key
fingerprint.

 Encrypting Files

KGPG is integrated nicely into KDE and KDE applications. The most useful is the
Konqueror browser. Once KGPG is installed, you can right-click on a document,
and under the Actions menu, create an encrypted version of the document.
One of the options is to shred the original, which makes a lot of sense if
keeping the unencrypted version is a problem. When encrypting files, you can
add multiple keys for different people who can read the document. If you shred
the original file, make sure you include your own key whenever you encrypt it. If
I use only my rhoobler@comcast.net key, I am the only person that can decrypt
the file.

 Sending E-Mail

Finally, we are ready to send an encrypted e-mail. Using KMail (or Kontact), type
a message—I'll use rhoobler@comcast.net as the To: address. Select the Lock
icon (or Options→Encrypt from the menu). When you click Send, a dialog comes
up. If you do not see the recipient's key, press the refresh button. Also, if you
didn't sign the key, it won't show up; go back and sign it with the Key
Management tool and then press the refresh button. Finish typing the message
and click Send.

With KMail, decrypting messages is built in. When you receive an encrypted
message, you are asked for your passphrase and the message opens. If you are
sending an encrypted message, if the e-mail address is in your keyring, it is
encrypted and sent automatically. You also can send the message encrypted to
several people at once, as long as you have their public keys.

Another method is to encrypt the file with KGPG and send the encrypted file as
an attachment. KMail automatically decrypts the attachment for viewing (select
view not open). For Web-based e-mail clients, you can download the file and
decrypt or view it with Konqueror.

If you are using a Web-based e-mail client such as Yahoo mail, you can cut and
paste the encrypted messages from the clipboard to the KGPG editor by right-
clicking on the Tasks Tray icon, and then select decrypt clipboard. The same
holds true for encrypting messages.

Figure 3. Decrypt Clipboard

 Signing E-Mail

More popular than encryption is signing e-mails. Of course, this doesn't encrypt
the text, but signing a message proves that it is from you. If I sign all my e-mails,
because it is policy, and you get an e-mail from me that is not signed (or the
signature doesn't match), you can assume it is a fake and alert whoever needs
to be notified.

With KMail, the e-mail message is color-coded to let you know if it is a signed
message and if the message came from a trusted source—yellow means
signed, and green means signed and trusted.

 Creating Groups/Other Options

Another handy tool in KGPG is the ability to create groups of keys. I could have
an Administrative group that contains three or four keys. When sending a
message, I can select that group and send it out. Later, if a recipient forwards
the message to another person in the group, it already will be ready to read.

One other thing, under Configure KGPG, use the ASCII Armor option. It should
be on by default. This makes signatures and encryption in plain text, so it is
easy to mail, print and cut and paste. Without ASCII Armor, some files will be
binary and may cause problems.

 Summary

Time permitting, I'll try to decrypt and answer any encrypted messages that
may come in. Because KGPG is included with KDE, it is included with most Linux
distributions. Setting up a few keys and testing it yourself is only an hour or two
worth of work.

With GnuPG and KGPG, using keys and encryption is a viable solution if you
need to tighten up security. In my career, a lot of attention has been given to
security for connections and transactions over SSL, but little attention has been
given to files and e-mail. With KDE, and some effort, having secure e-mail is
easy to set up. One idea to start with is encrypting any e-mail you send to your
manager or the owner of the company. Another idea is to set up a private
folder on the network that stores only encrypted documents. Following these
types of security policies makes encryption easier to implement.

Resources for this article: /article/7863.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7863.html

Roy Hoobler is owner of Connect Computing, Inc.
(www.connectcomputing.com). As an independent consultant with ten years of
proprietary software experience, his firm now focuses on helping small
businesses to use Linux, as well as implement open-source business
applications.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.connectcomputing.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Networking in NSA Security-Enhanced Linux

James Morris

Issue #129, January 2005

Break through the complexity of SELinux with a working example that shows
how to add SELinux protection to a simple network server.

In this article, we take a look at how SELinux can help increase the security of
networked systems, as well as the design and implementation of its network-
specific security controls. We then walk through an example of using SELinux
policy to lock down a simple network application.

 Overview: SELinux Roles, Types and Domains

SELinux provides strong general security for networked systems. It allows
systems to be locked down tightly so that services have only the minimum set
of rights required to operate. This implementation of the principle of least
privilege helps contain security breaches arising from buggy code, malicious
code, user error and malicious users.

For example, an externally facing Web server normally might be hardened in a
variety of ways, including:

• Disabling unnecessary services.
• Running server software in chroot jails.
• Local packet filtering with iptables.
• Privilege management with sudo.
• Locking down configuration files.

This is a good, multilayered approach to security, implementing the principle of
defense in depth.

SELinux adds another security layer, mandatory access control (MAC). Standard
SELinux implements MAC via type enforcement (TE) combined with role-based
access control (RBAC), under the control of a centrally managed security policy,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

enforced by the kernel. Unlike traditional UNIX security, normal users do not
have any control over SELinux security policy (hence the term mandatory),
while the superuser, root, can be split into isolated administrative roles for
authorized users, called separation of duty.

Traditional discretionary access control (DAC) is further restricted by the TE
model, which assigns types to operating system objects such as processes, files
and network resources, then defines rules for interactions between them. (The
type of a process usually is referred to as a domain.) This allows for fine-
grained access control, extending the principle of least privilege well beyond
the scope of typical OS hardening.

 SELinux Network Access-Control Architecture

SELinux is built upon the LSM (Linux Security Modules) and Netfilter APIs in the
2.6 kernel. LSM and Netfilter are both access-control frameworks consisting of
strategically located hook points within the kernel. Kernel flow is redirected
from these hooks to security modules such as SELinux, which perform access-
control calculations and return a verdict to the hook. A hook uses the verdict
returned from the security module either to allow normal kernel flow to
continue or prevent it.

One of the core design principles of SELinux is that it mediates access at the OS
object level. Rather than a naive approach where a security monitor decides
whether a program can execute a particular system call with certain arguments,
SELinux looks at the full security context of the program during execution, the
security label attached to the object being accessed and the action being taken.
For example, ls run by the system administrator is different from ls run by a
normal user.

The general form of an SELinux permission is:

action (source context)
(target context):(target object classes)
permissions

Here's an example from SELinux policy:

allow bluetooth_t self:socket listen;

This provides the bluetooth_t domain with the listen permission for sockets
labeled with its own security context. So, a process running in the bluetooth_t
domain is allowed to invoke listen() on a socket that it owns.

The self designator is simply a shorthand way of making the target context the
same as the source context. This commonly is used in policy relating to sockets
as they typically are labeled with the same security context as the creating
process.

 Network Object Labeling

Under SELinux, objects are labeled with a security context of the following
form:

user:role:type

For example:

root:staff_r:staff_t

is the context of a process being run by root via the staff_r role in the staff_t
domain. The label associated with port 80 is:

system_u:object_r:http_port_t

The system_u user and object_r role are default values for system objects. It
wouldn't make any sense for a port to have a real user or role; it's not owned
by anyone and it doesn't initiate any actions that require a verdict from
SELinux.

 Sockets

A socket is labeled by its associated inode and is categorized as either a generic
socket or one of the following socket subclasses:

• UNIX stream.
• UNIX datagram.
• TCP.
• UDP.
• Raw (includes ICMP and other non-TCP/UDP).
• Netlink families.
• Packet.
• Key (pfkeyv2).

Subclasses of sockets can be distinguished in security policy, providing for fine-
grained control and flexibility over different network protocols:

allow lpd_t printer_port_t:tcp_socket name_bind;

This rule allows only a TCP socket created in the lpd_t domain to bind to a port
of type printer_port_t.

 Ports

IPv4 and IPv6 ports are labeled implicitly within the kernel, as specified by
policy. The format for labeling port types is:

portcon protocol { port number | port range }
 context

The following defines a security context for labeling the standard printer port:

portcon tcp 515 system_u:object_r:printer_port_t

 Network Interfaces

Each network interface (netif) is labeled with a security context, as specified in
policy. Network interfaces are labeled as follows:

netifcon interface context default_msg_context

The default_msg_context parameter is intended to be used for labeling
messages arriving on the interface, but is not currently used.

Here are some examples of netif labeling in policy:

netifcon eth0 system_u:object_r:netif_intranet_t [...]
netifcon eth1 system_u:object_r:netif_extranet_t [...]

 Nodes

Under SELinux, a node refers to an IPv4 or IPv6 address and netmask. It allows
host and network addresses to be labeled with security contexts via policy.

The format for labeling nodes is:

nodecon address mask context

Here are examples of labeling localhost addresses:

nodecon 127.0.0.1 255.255.255.255
 system_u:object_r:node_lo_t
nodecon ::1 ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
 system_u:object_r:node_lo_t

 Network Hooks and Permissions

Access-control hooks are implemented for every socket system call, allowing all
socket-based network protocols to be mediated by SELinux policy. A few hooks
are used only for housekeeping, but otherwise, hooks generally are used to
check one or more access-control permissions.

As there are a large number of generic socket controls, see Table 1 for the
relationships between the hooks, socket system calls and permissions.

Table 1. The Relationships between Hooks, Socket System Calls and

Permissions

Internally, the socket() system call is decomposed into two hooks. The
selinux_socket_create hook is used to check whether the process can create a
socket of the type requested. The selinux_socket_post_create management

Hook System Call
SELinux

Permission

selinux_socket_create socket create

selinux_socket_post_create socket n/a

selinux_socket_bind bind bind

selinux_socket_connect connect connect

selinux_socket_listen listen listen

selinux_socket_accept accept accept

selinux_socket_sendmsg
sendmsg, send,

sendto
write

selinux_socket_recvmsg
recvmsg, recv,

recvfrom
read

selinux_socket_getsockname getsockname getattr

selinux_socket_getpeername getpeername getattr

selinux_socket_setsockopt setsockopt setopt

selinux_socket_getsockopt getsockopt getopt

selinux_socket_shutdown shutdown shutdown

hook is used to assign a security label and socket class to the newly allocated
inode associated with the socket.

The SELinux permissions also abstract the way system calls and other
operations are viewed from a security point of view. Note, for example, that the
getattr permission is used for the getsockname() and getpeername() system
calls. They are seen to be equivalent security-wise by SELinux. Similarly, all of
the sendmsg()- and recvmsg()-based system calls are reduced for security
management purposes into simply read and write. For the curious, the code
behind these hooks can be found in the 2.6 kernel, in security/selinux/hooks.c.

As sockets are also files, they inherit some of the access controls associated
with files. Table 2 lists the file-specific hooks and permissions inherited by
sockets.

Table 2. File-Specific Hooks and Permissions

 UNIX Domain Controls

Under Linux, UNIX domain sockets can be created in an abstract namespace
independent of the filesystem. Additional hooks have been implemented to
allow mediation of communication between UNIX domain sockets in the
abstract namespace, as well as to provide control over the directionality of
UNIX domain communications. The selinux_socket_unix_stream_connect hook
checks the connectto permission when one UNIX domain socket attempts to
establish a stream connection to another. The selinux_socket_unix_may_send
hook checks the sendto permission when one UNIX domain socket transmits a
datagram to another.

Another feature of UNIX domain sockets under Linux is the ability to
authenticate a peer with the SO_PEERCRED socket option. This obtains the user
ID, group ID and process ID of the peer. Under SELinux, we also can obtain the

Hook System Call SELinux Permission

selinux_file_ioctl ioctl ioctl

selinux_inode_getattr fstat getattr

selinux_inode_setattr fchmod, fchown setattr

selinux_file_fcntl fcntl lock

selinux_file_lock fcntl, flock lock

selinux_file_permission write, write, read append, write, read

security context of a peer via a new socket option SO_PEERSEC. Calling
getsockopt(2) with this option invokes the selinux_socket_getpeersec hook,
which copies the security context to a buffer passed in by the user. This is used
for local IPC, such as Security-Enhanced DBUS.

 Netlink Controls

Netlink sockets provide message-based user/kernel communication. They are
used, for example, to configure the kernel routing tables and IPSec machinery.

Netlink communication is asynchronous; messages can be sent in one context
and received in another. When a Netlink packet is transmitted, the sender's
security credentials in the form of a capability set are stored with the packet
and checked on reception. This allows, for example, the kernel routing code to
determine whether the user who sent a routing table update is really permitted
to do so.

As part of the LSM Project, capabilities logic was moved out of the core kernel
code and into a security module, so that LSMs could implement different
security models if needed.

The SELinux module uses the selinux_netlink_send hook to copy only the
NET_ADMIN capability to a Netlink packet being sent to the kernel.

The selinux_netlink_recv hook is invoked when security-critical messages are
received. SELinux uses this hook to verify that the NET_ADMIN capability was
copied to the packet during transmission and, thus, whether the sending
process had the capability.

An increasing number of Netlink families are being implemented, and SELinux
defines subclasses of Netlink sockets for those that are security-critical. This
allows the socket controls to be configured on a per-Netlink family basis (for
example, to differentiate routing messages from kernel audit messages).

SELinux also is able to determine, by using the selinux_netlink_send hook,
whether messages on certain types of Netlink sockets are read or write
operations and then apply the nlmsg_read or nlmsg_write permissions,
respectively. This allows fine-grained policy to specify, for example, that a
domain can read the routing table but not update it.

 IPv4 and IPv6 Controls

SELinux adds several controls for TCP, UDP and Raw socket subclasses. The
node_bind permission determines whether a socket can be bound to a specific

type of node. This obviously is useful only for local IP addresses and can be
used to restrict a dæmon to binding to a specific IP address.

The name_bind permission controls whether a socket can bind to a specific
type of port. This permission is invoked only when the port number falls
outside of the local port range. The local port range is where the kernel
automatically allocates port numbers from (for example, when choosing the
source port for an outgoing TCP connection) and can be configured through the
sysctl net.ipv4.ip_local_port_range. On a typical system, this range is:

$ sysctl net.ipv4.ip_local_port_range
net.ipv4.ip_local_port_range = 32768 61000

Thus, name_bind is invoked only when a socket binds to a port outside this
range. SELinux always invokes the permission for ports below 1024, regardless
of the sysctl setting. Both of these bind-related controls are called from the
selinux_socket_bind hook, which is invoked through the bind(2) system call.

The send_msg and recv_msg permissions are used to control whether a socket
can send or receive messages through a specific type or port.

A set of permissions is implemented that controls whether packets can be
received or sent over TCP, UDP or Raw sockets for specific types of netif and
node objects. These are tcp_send, tcp_recv, udp_send, udp_recv, rawip_send
and rawip_recv.

These message-based controls are invoked for incoming packets at the
selinux_sock_rcv_skb hook, the first point in the networking stack where we
reliably can associate a packet with a recipient socket. For outgoing packets,
SELinux registers a Netfilter hook and catches them at the IP layer; outgoing
packets still have socket ownership information attached at this stage.

All of the above controls are protocol-independent in that they operate on both
IPv4 and IPv6 protocols.

 Network Policy

We've covered enough theory now to look at a real example of SELinux policy
for a simple network application. Due to space limitations and the complexity
of real-world networking, we develop a policy for a simple TCP echo client.

The source code for the client is available at the Web site listed in the on-line
Resources for this article. Briefly, it creates a TCP socket, connects to a remote
host's echo port, writes some text and then reads it back.

My workstation has two Ethernet interfaces, and in this example, eth0 is on an
intranet, and the server I am connecting to has the IP address 10.3.1.2.

Here are the goals of the security policy:

• Grant the client only the OS access it absolutely needs.
• Allow the client to communicate only with inetd servers on the 10.3.1.0/24

subnet via eth0.

 Policy

The following is an annotated security policy that meets these goals. To use it,
install the SELinux policy sources package for your distribution, and cd to the
top-level directory (/etc/selinux/strict/src/policy on my workstation).

Create a file called domains/program/echoclient.te, and add these policy
entries as shown in Listing 1.

Listing 1. echoclient.te

Simple echoclient policy for Linux Journal article
File: domains/program/echoclient.te

Define the echoclient_t type as a domain.
type echoclient_t, domain;

Define echoclient_exec_t as a type of executable
file.
type echoclient_exec_t, file_type, exec_type;

This is a macro which will allow a correctly
labeled executable to transition into the
echoclient_t domain from the staff_t domain.
domain_auto_trans(staff_t, echoclient_exec_t,
 echoclient_t)

Designate which roles may enter the echoclient_t
domain.
role staff_r types echoclient_t;

This is a macro which allows the domain to use
shared libraries.
uses_shlib(echoclient_t);

Provide the permissions required to run the
program when logged in via SSH as staff_t,
allowing diagnostic and error messages to be
written to the user's tty.
allow echoclient_t sshd_t:fd use;
allow echoclient_t staff_devpts_t:chr_file {
 getattr read write };

Network configuration

These are the socket permissions required by the
domain. Note that they are locked down to TCP
sockets.
allow echoclient_t echoclient_t:tcp_socket {
 connect create read shutdown write };

Allow the program to send and receive TCP messages
to the echo port. In standard policy, the port is
labeled as an inetd_port_t as it is one of a group

of ports managed by inetd. You could modify the
policy in net_contexts to lock this down to one
port if needed.
allow echoclient_t inetd_port_t:tcp_socket {
 recv_msg send_msg };

Allow only TCP traffic over the intranet interface.
allow echoclient_t netif_intranet_t:netif {
 tcp_recv tcp_send };

Allow only TCP communication with internal IP
addresses.
allow echoclient_t node_internal_t:node {
 tcp_recvtcp_send };

Add the following labeling definitions to the net_contexts file:

Label eth0
netifcon eth0 system_u:object_r:netif_intranet_t
 system_u:object_r:unlabeled_t

 # Label the internal network.
nodecon 10.3.1.0 255.255.255.0
 system_u:object_r:node_internal_t

Update the types/network.te file:

Define netif_intranet_t as a type of network
interface.
type netif_intranet_t, netif_type;

Define a file context for the executable in a new file called file_contexts/
program/echoclient.fc:

Default file context for labeling
/tmp/echoclient -- system_u:object_r:echoclient_exec_t

Compile and load the policy:

$ make load

That's all—the policy is done. It seems like a lot to do, but it gets easier once
you're familiar with the various policy files and types of policy entries needed. It
also helps to use tools like audit2allow, which takes audit log denial messages
and turns them into allow rules. It would be better to use a high-level GUI policy
tool for day-to-day policy development; we've taken it step by step here to
show how things work.

 Testing

Now, build and label the client executable:

$ make echoclient
cc echoclient.c -o echoclient

$ restorecon /tmp/echoclient

Verify that it is labeled correctly:

$ getfilecon /tmp/echoclient
/tmp/echoclient system_u:object_r:echoclient_exec_t

You could have used ls -Z instead.

Let's see if it works—logged in as root in the staff_r role, using SSH:

$ id -Z
root:staff_r:staff_t

$ /tmp/echoclient 10.3.1.2
Sending message: 'Hello, cliche'
Received message: 'Hello, cliche'

It worked!

You can add auditallow rules to the policy to watch each permission being
granted, if you want.

Let's verify that some of the policy rules are actually working.

1) Try to communicate with an IP address outside the intranet. Route the
address locally, so you don't accidentally send a packet onto the Internet:

$ ip ro add 196.40.74.92 via 10.3.1.2 dev eth0

$ /tmp/echoclient 196.40.74.92

The program gets a TCP timeout, and the following audit denial message is
generated when a packet is sent:

avc: denied { tcp_send } for pid=10831
 exe=/tmp/echoclient saddr=10.3.1.1 src=32822
 daddr=196.40.74.92 dest=7 netif=eth0
 scontext=root:staff_r:echoclient_t
 tcontext=system_u:object_r:node_t
 tclass=node

As expected, the echoclient_t domain was denied access to transmit a TCP
packet to a /node_t/ node, the default generic node context.

2) Try to communicate over the wrong interface. Route the echo server IP via
the loopback interface, so packets will be sent there:

 $ ip ro add 10.3.1.2 via 127.0.0.2 dev lo

 $ /tmp/echoclient 10.3.1.2

avc: denied { tcp_send } for pid=10828
 exe=/tmp/echoclient saddr=10.3.1.1 src=32821

 daddr=10.3.1.2 dest=7 netif=lo
 scontext=root:staff_r:echoclient_t
 tcontext=system_u:object_r:netif_lo_t
 tclass=netif

This also is working correctly. The echoclient_t domain was denied access to
transmit a packet over a netif_lo_t netif.

The echoclient program runs with a very minimal set of rights as defined in the
policy. Anything not explicitly allowed is denied. The potential damage arising
from a flaw in the program, user error or malicious user would be greatly
confined by this policy.

This is a simple demonstration of how to meet network security goals with
SELinux policy. A real-world policy would require several extra features, omitted
for space and clarity, such as the ability to use ICMP messaging and DNS
lookups. See the policy sources package of your distribution for some detailed
examples, and also try some of the GUI policy tools.

 Future Developments

It is likely that some form of labeled networking will be implemented for
SELinux. This is where network traffic itself is labeled and typically is used in
military and government environments dealing with classified information. An
earlier version of SELinux used IP options to label packets, although it was
dropped before merging with the upstream kernel as the hooks it needed were
too invasive. A possible alternative is to integrate SELinux with IPSec and label
the Security Associations (SAs) instead of the packets. A packet arriving on a
specific SA would be labeled implicitly with the context of the SA. A prototype of
this scheme was implemented for the preceding Flask Project, and it should be
useful as a guideline.

More general integration of SELinux with network security components, such as
cryptography and firewalling, also are areas for future exploration.

 Acknowledgement

Thanks to Russell Coker for reviewing this article and providing valuable
feedback.

Resources for this article: /article/7864.

James Morris (jmorris@redhat.com) is a kernel hacker from Sydney, Australia,
currently working for Red Hat in Boston. He is a kernel maintainer of SELinux,
Networking and the Crypto API; an LSM developer, and an Emeritus Netfilter
Core Team member.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7864.html
mailto:jmorris@redhat.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Encrypt Your Root Filesystem

Mike Petullo

Issue #129, January 2005

When you can't depend on physical security to keep your files safe, it's time to
take the extra step of encrypting the filesystem. Although this article covers
converting a PowerPC-based system, the principles are applicable to other
architectures too.

In the Linux Journal article “Implementing Encrypted Home Directories” (August
2003), I described how to encrypt home directories transparently. This article
describes how to implement another technique, an encrypted root filesystem. I
discuss the GNU/Linux boot process and software requirements, present some
instructions, introduce Open Firmware and discuss other relevant
considerations. The system I use to teach these concepts is a New World
PowerPC-based Apple iBook running a pre-release of Fedora Core 3. Despite
these specifics, the concepts and procedures in this article can be applied to
any device, architecture or operating system. My instructions assume you have
a spare USB Flash disk and your system's firmware has the ability to boot off of
it.

I also assume the reader is comfortable applying source patches and compiling
programs. As of Fedora Core 3 Test 3, the mkinitrd and initscripts packages
require patching to support an encrypted root filesystem. A basic
understanding of how to manage partitions and create filesystems also is
required. Performing a basic install of a Linux distribution is beyond the scope
of this article.

Before presenting the technical steps involved, a higher-level concept must be
discussed, trust. Trust is intertwined with cryptography and authentication. An
implicit assumption of trustworthiness is given to any device that has an
electronic key. For example, when I share my bank account PIN with an
automatic teller machine, I trust that the ATM will not share my PIN with an
inappropriate third party. In the same way, when I provide an encryption key to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

my computer, I assume the key will not be shared with anyone else. I trust the
computer to keep the secret between us.

So, can you trust your computer? Unless you carry it with you everywhere, you
really can't. This is true even if the disks have been encrypted. Consider this
scenario: someone steals your computer as you sleep. The thief makes a copy
of the encrypted contents of the computer, even though they are useless to
him without their encryption key. He then replaces the encrypted laptop
contents with something a little more diabolical and puts the computer back.
When you wake up the next day, the computer prompts for an encryption
password as it does every morning. But this time when you provide the key it
electronically transmits the key to the thief. Because he now has a copy of your
data and key, he can read your files.

This scenario may be a bit far-fetched, but it does illustrate a point. You can't
trust your laptop. It's too big to keep your eyes on all the time. Therefore, no
matter how well implemented your encryption system is, it is built without the
prerequisite foundation of trust.

To ensure that we can trust the computer's boot process, we need to separate
it from the computer. Consider this: you carry the keys to your car with you
instead of carrying your car. Your encryption key is a natural conceptual leap
from your car key. You can protect your encryption key more easily, so you
don't have to carry your computer everywhere. To take things a little further
and to address the above scenario, we also will place the software required to
boot the computer on this key. The Flash disk will serve as this key. By
protecting the software that boots the system initially, in addition to the
encryption key, we can mitigate the risk of the boot process being hijacked.

An understanding of how your computer boots is required, because unlocking
an encrypted root filesystem is integral to the bootstrap process. The current,
stable kernel series, 2.6, optionally uses initramfs to help boot, as documented
in LWN.net's “Initramfs Arrives”. Initramfs is a cpio archive that the kernel now
knows how to unpack into a RAM-based disk. This unpacked filesystem
contains a script that traditionally loads kernel modules needed to mount the
root filesystem. In our case, this script also unlocks the encrypted root
filesystem. More information on this subject can be found in the files buffer-
format.txt and initrd.txt that are distributed with the Linux kernel sources.

Several filesystem encryption interfaces are available for Linux. Jari Ruusu's
Loop-AES is one such project. Several cryptoloop variations that provide an
encrypted loopback device also exist. This article focuses on the dm-crypt
interface provided by recent 2.6 Linux kernels. This interface currently is
preferred by the Fedora Project, and dm-crypt modules are provided by

Fedora's kernel packages. Also required is a statically linked cryptsetup. This
utility simplifies the management of dm-crypt devices. Finally, parted and
hfsutils are used to manage the boot filesystem.

Unfortunately, Fedora Core's anaconda installer does not yet support installing
to an encrypted filesystem out of the box. To bypass this limitation, you must
leave a partition free, install Fedora, format the free partition as an encrypted
filesystem and copy the originally installed data onto the new encrypted
filesystem. For the purpose of simplicity, I assume Fedora is to be installed onto
two partitions: /dev/hda4, mounted at /home, and /dev/hda5, mounted at /.
Because /home is not populated until after Fedora is installed, we can use /dev/
hda4 as our spare partition and /dev/hda3 as the swap partition.

Install Fedora Core 3, mounting /dev/hda4 at /home and /dev/hda5 at /. Do not
add any nonroot users yet, as /home will be wiped clean later. At this point, you
should have a fully functioning Linux system.

Before an encrypted filesystem is set up, you should randomize the partition it
will occupy. This eliminates a potential leak of information about the disk's
contents. Figure 1 demonstrates an abstract disk that is half-full and not
randomized properly. Figure 2 demonstrates a disk that was randomized
properly before being formatted to contain an encrypted filesystem. Notice
that, given Figure 1, one can gain some knowledge about its contents (such as
that they span one-half of the disk). Figure 2 affords an adversary no such
luxury. In this case, the disk could as easily be empty as full. A partition is
randomized by overwriting its contents with random data: dd if=/dev/
urandom of=/dev/hda4. This process can take a long time, because
creating random data is somewhat difficult.

Figure 1. When you don't randomize the disk partition before creating the filesystem, an
attacker can see how full it is.

Figure 2. Randomizing the partition hides how much is used.

To create an encrypted ext3 filesystem on /dev/hda4, use the following steps:

1) Ensure that the aes, dm-mod and dm-crypt modules have been loaded into
the kernel.

2) Unmount the partition that will host the encrypted root filesystem, /dev/
hda4, from /home:

umount /dev/hda4

3) Create a random 256-bit encryption key and store it at /etc/root-key:

dd if=/dev/urandom of=/etc/root-key bs=1c count=32

This key will be copied to the Flash disk later.

4) Create a dm-crypt device, encrypted using the key you just generated:

cryptsetup -d /etc/root-key create root /dev/hda4

Accessing /dev/mapper/root now provides an encrypted layer on top of /dev/
hda4. By default, cryptsetup creates an AES-encrypted dm-crypt device and
assumes a keyspace of 256 bits.

5) Create an ext3 filesystem on /dev/mapper/root:

mkfs.ext3 /dev/mapper/root

6) Mount the new filesystem:

mkdir /mnt/encroot
mount /dev/mapper/root /mnt/encroot

7) Now that you have an encrypted filesystem, you must populate it with the
contents of /dev/hda5 (the original root filesystem):

cp -ax / /mnt/encroot

8) Finally, create an entry in /mnt/encroot/etc/crypttab so that various utilities
know how the filesystem was configured:

root /dev/hda4 /etc/root-key cipher=aes

Now that we have our encrypted filesystem ready, it is necessary to understand
a little more about the target architecture's boot process. Generally, computers
have firmware that hands off execution to the software that will complete the
system boot. Protecting firmware is beyond the scope of this article, so we

assume that the system's firmware can be trusted. Most readers probably are
familiar with the BIOS, the boot firmware used by the PC platform. I focus on
Open Firmware, a boot system used by computer manufacturers such as Apple,
Sun and IBM.

The installation instructions for NetBSD/macppc provide a good introduction to
Open Firmware. We are interested in using Open Firmware's command-line
interface to configure the computer to boot from a removable Flash disk. Open
Firmware allows you to view the devices connected to a computer and view and
set the value of firmware variables.

The Open Firmware prompt can be accessed by holding down option-
command-o-f on a New World (G3 and later) Apple computer during the initial
boot process.

The variable boot-device is used to determine what device the system should
use to boot. The printenv command allows one to inspect its current value:

> printenv
[...]
boot-device hd:,\\:txbi hd:,\\:txbi

This essentially means “boot by executing the file of HFS type txbi on the first
IDE disk.” The second : character (before txbi) causes the token to be
interpreted as an HFS file type. Otherwise, txbi would be interpreted as the
path to a file. In my case, the token hd is actually an alias to the more
complicated /pci@f4000000/ata-6@d/disk@0. This string represents the
path through various subsystems to the first IDE disk. You can see what device
an alias resolves to using Open Firmware's devalias command.

To set the boot-device correctly we need to discover by what name Open
Firmware knows our Flash disk. Examining the device tree printed by the ls
command reveals the path to the Flash disk:

> dev / ls
[...]

/pci@f2000000
[...]
/usb@1b,1

[...]
/disk@1

[...]

Now that we know a little bit about the firmware's view of the computer, we
must spend some time investigating the software the firmware initially
executes: the bootloader. Generally, Linux systems that run on Apple's
PowerPC architecture employ a program called yaboot to boot the system.
yaboot is similar to LILO or GRUB and contains two key programs, ofboot.b and
yaboot. ofboot.b provides the first stage of the bootstrap process. Essentially, it

is ofboot.b's job to determine what operating system to boot. For example, if a
system has both Mac OS X and Linux installed, ofboot.b executes Mac OS X or
Linux's bootloader. If the user chooses to load Linux, ofboot.b executes yaboot,
the second stage of the bootstrap process. yaboot then loads the Linux kernel
and, in our case, an initrd. Figure 3 provides a illustration of how Linux boots
using an encrypted root filesystem on the PowerPC architecture.

Figure 3. The Booting Process on a PowerPC-Based System with Open Firmware

Our removable boot device requires the ofboot.b and yaboot programs, a Linux
kernel and an initrd that contains the encryption key. Apple's current PowerPC-
based architecture expects its boot media formatted using HFS.

1) Use the parted program to create the proper bootable partition on the Flash
disk (mine is 64MB and is accessed using the device node /dev/sda):

parted /dev/sda
(parted) mklabel mac
(parted) print
Disk geometry for /dev/sda: 0.000-62.500 megabytes
Disk label type: mac
Minor Start End Filesystem Name Flags
1 0.000 0.031 Apple
(parted) mkpart primary hfs 0.031 62.500
(parted) print
Disk geometry for /dev/sda: 0.000-62.500 megabytes
Disk label type: mac
Minor Start End Filesystem Name Flags
1 0.000 0.031 Apple
2 0.031 62.500 untitled
(parted) set 2 boot on
(parted) name 2 Apple_Boot
(parted) quit

2) Create an HFS on the boot partition:

hformat /dev/sda2

3) Configure yaboot to boot off the appropriate device by modifying /mnt/
encroot/etc/yaboot.conf. The following is a minimum configuration:

boot=/dev/sda2
ofboot=/pci@f2000000/usb@1b,1/disk@1:2
partition=2
install=/usr/lib/yaboot/yaboot
magicboot=/usr/lib/yaboot/ofboot
default=linux
image=/vmlinux
 label=linux
 root=/dev/hda4
 initrd=/initrd.gz
 read-only

The value /pci@f2000000/usb@1b,1/disk@1:2 comes from our earlier
inspection of the Open Firmware device tree, and /pci@f2000000/usb@1b,
1/disk@1 is the first disk on the USB bus on the PCI bus at f2000000. The
device we are interested in is a disk, and :2 means partition 2.

4) Install the bootstrap programs and kernel to /dev/sda2:

ybin --config /mnt/encroot/etc/yaboot.conf -v
mount /dev/sda2 /media/usbstick
cp /boot/vmlinux /media/usbstick

At this point, the crypto-aware initrd must be installed onto the Flash disk.
Fedora provides a tool named mkinitrd that can create an initrd. However, at
the time this article was written, mkinitrd did not know how to mount an
encrypted root. The patch at https://bugzilla.redhat.com/bugzilla/show_bug.cgi?
id=124789 provides this functionality. Once the patch is applied, mkinitrd reads
/etc/crypttab and creates an appropriate initrd:

1. mkinitrd --authtype=paranoid -f /media/usbdisk/initrd.gz <kernel version>
2. umount /media/usbstick

The file /mnt/encroot/etc/fstab should be updated to reflect the changes made:

/dev/mapper/root / ext3 defaults 1 1

Encrypted swap or the absence of swap space entirely is a prerequisite for an
encrypted filesystem. Reasons for this can be found in “Implementing
Encrypted Home Directories” and in a BugTraq mailing-list thread titled “Mac
OS X stores login/Keychain/FileVault passwords on disk”. When the patch at
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=127378 is applied to the
initscripts package, Fedora allows users to encrypt their swap partitions using a
randomly generated session key. Because swap space isn't generally required
to be consistent across reboots, the session key is not saved when the system
is powered down. To enable encrypted swap, complete the following steps:

1) Add the following line to /mnt/encroot/etc/fstab, replacing any previous swap
record:

/dev/mapper/swap swap swap defaults 0 0

2) Add the following line to /mnt/encroot/etc/crypttab to tell the system how to
perform the encryption:

swap /dev/hda3 /dev/urandom swap

At this point we should be able to reboot the system and use our encrypted
filesystem. Again, we need to hold down option-command-o-f to enter the
Open Firmware prompt.

As demonstrated above, the path to the Flash drive's second partition is /
pci@f2000000/usb@1b,1/disk@1:2. Knowing this, we can build the path /
pci@f2000000/usb@1b,1/disk@1:2,\ofboot.b. The , deliminates
between the partition number and the filesystem path; \ofboot.b is the

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=124789
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=124789
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=127378

filesystem path, and \ is like UNIX's / with the filesystem root at the device's
root:

> dir /pci@f2000000/usb@1b,1/disk@1:2,\
Untitled GMT File/Dir
 Size/ date time TYPE Name
 bytes 9/ 3/ 4 21:44:41 ???? ???? initrd.gz
 2212815 8/28/ 4 12:24:21 tbxi UNIX ofboot.b
 3060 9/ 3/ 4 2:21:20 ???? ???? vmlinux
 141868 9/28/ 4 12:24:22 boot UNIX yaboot
 914 9/28/ 4 12:24:22 conf UNIX yaboot.conf

This confirms that Open Firmware can read the files required to boot the
system. Setting the value of the boot-device variable to /pci@f2000000/
usb@1b,1/disk@1:2,\ofboot.b causes the system to boot from the
Flash disk: setenv boot-device /pci@f2000000/usb@1b,1/
disk@1:2,\ofboot.b.

Once the system successfully boots from the encrypted root, it is necessary to
destroy all of the data on /dev/hda5. This can be done with the same procedure
used to randomize the root filesystem's partition: dd if=/dev/urandom
of=/dev/hda5. You may want to perform this overwrite several times. For
one standard on sanitizing disks, see Chapter 8 of the US Department of
Defense's “National Industrial Security Program Operating Manual”.

Following a safe sanitization, /dev/hda5 may be used as /home. The /home
filesystem also should be encrypted. Luckily, this is a much simpler process,
because the system need not boot off of /home. Creating the filesystem itself is
similar to the steps taken to create the root filesystem.

1) Ensure that the aes, dm-mod and dm-crypt modules have been loaded into
the kernel.

2) Unmount the partition that will host the encrypted home filesystem, /dev/
hda5, from /home:

umount /dev/hda5

3) Create a random 256-bit encryption key, and store it at /etc/home-key. One
way to do this is:

dd if=/dev/urandom of=/etc/home-key bs=1c count=32

4) Create a dm-crypt device, encrypted using the key you just generated:

cryptsetup -d /etc/home-key create home /dev/hda5

5) Create an ext3 filesystem on /dev/mapper/home:

mkfs.ext3 /dev/mapper/home

6) Mount the new filesystem:

mount /dev/mapper/home /home

7) Create an entry in /etc/crypttab, so that various utilities know how the
filesystem was configured:

root /dev/hda5 /etc/home-key cipher=aes

8) Finally, update /etc/fstab to contain an entry for /home:

/dev/mapper/home /home ext3 defaults 1 2

At this point, it is appropriate to begin adding nonroot local user accounts to
the system. Setting up the encrypted root filesystem is now complete.

Having all of your data encrypted can be dangerous. If the encryption key is
lost, your data is lost. Because of this, it is important to make backup copies of
the Flash disk containing your key. It also is crucial to perform plain-text
backups of the encrypted data. If you maintain a bootable rescue disk, it may
make sense to rethink the system components that should be on it. A copy of
your root and home filesystem keys, parted, hfsutils, the cryptography-related
kernel modules and cryptsetup are excellent candidates.

How effective is this technique in protecting your data? In his book, Secrets and
Lies, Bruce Schneier presents a technique that is useful in evaluating this. An
attack tree can be used to model threats. Figure 4 presents the beginning of an
attack tree for our encrypted filesystem. It is important to note that this attack
tree is not complete and probably never will be.

Figure 4. How can an attacker read the encrypted filesystem?

By using the techniques in this article and a little creative thinking, it is possible
to make the data on your hard disk more resistant to certain types of theft. It is
important to keep in mind the types of attacks that circumvent these defensive

https://secure2.linuxjournal.com/ljarchive/LJ/129/7743f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7743f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7743f4.large.jpg

techniques. Though other techniques must be used to protect against network-
based and other attacks, those described here are a powerful tool toward the
goal of overall system security.

Resources for this article: /article/7865.

Mike Petullo currently is working at WMS Gaming as a test engineer. He has
been tinkering with Linux since 1997 and welcomes your comments at
lj@flyn.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7865.html
mailto:lj@flyn.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 How I Feed My Cats with Linux

Chris McAvoy

Issue #129, January 2005

Give your Linux box the power to control real-world events with an inexpensive
microcontroller from Parallax, a Python program and some serial port magic.

Cats love toys. Our cats, Cotton and Tulip, slowly have taken over our house
with their little plastic doo-dads—ping-pong balls, furry mice, bells, springs and
things to scratch. The cats are rarely bored. On the weekends, my wife and I
oblige the kittens by tossing their toys around the house, flinging strings and
jingling bells. We scratch their backs and feed them treats. They're both in love
with these little stinky fish treats; all we need to do is shake the can, and they
stop whatever they're doing and dash to the kitchen. Their English lexicon now
includes their names and the words good and treats.

Monday through Friday, nine to five, however, the cats are responsible for their
own entertainment. While we're away, we're sure the cats have a good time
with their toys. Our rugs almost always are moved around, ping-pong balls end
up in water dishes and fur covers our chairs. The only real difference between
the weekday and the weekend is our presence and the lack of treats.

We have to work, but that doesn't mean our cats should have to go without
stinky little fish, right? Why should our economic necessities have a negative
effect on their treat times? Isn't it our responsibility to build them an Internet-
enabled, Linux-based, cat-feeding device?

Where do we start? Three ingredients are key to our Linux-based Internet cat
feeder: logic on the system, a way to talk to a device and a device to talk to. I
chose Python for the logic piece, talking over a serial port to a microcontrolled
cat feeder of my own design. Let's start at the bottom, the device, and work our
way up to the top, the logic.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 The BASIC Stamp Microcontroller

I first heard about the BASIC Stamp microcontroller from an article on Slashdot
in which three guys were using a BASIC Stamp to control a bolt gun. They had
taken some great pictures of bolts destroying fruit. Microcontrollers, I soon
learned, are everywhere. They're the bits of logic in our microwaves and our
remote controls. They are tiny and often difficult to use.

Parallax, Inc., specializes in making microcontrollers for non-engineers,
specifically for students and hobbyists. Parallax products are well documented,
easy to use and relatively inexpensive. I bought the Homework Board, the most
inexpensive starter kit, from Radio Shack for around $75 US. It came with a
book, a bag of electronic components for the experiments in the book and the
board and chip.

The Stamp itself actually is a PIC microcontroller with some memory. Typically,
you need to program microcontrollers with a low-level language, such as
Assembly. What sets the BASIC Stamp apart from a typical microcontroller is
the programming language you use to make it do stuff. Parallax developed a
superset of BASIC, called PBASIC, that makes it easy to build expressive, useful
programs quickly. In addition, the Homework Board has an integrated
solderless breadboard, which makes for quick rewiring of projects.

The BASIC Stamp has 16 I/O pins. Each pin is set to high, +5V, or low, 0V, based
on programs you create. Say you want to make an LED blink. You attach one
end to an I/O pin and the other to a ground pin. You write a program that says,
every second, turn the I/O pin to high (on), wait for a second, then turn it to low
(off). Now replace the LED with a servo, and we've got the start of the cat
feeder.

The I/O pins also listen for +5V or 0V. PBASIC even has a built-in function that
allows an I/O pin to read serial data, the basis of which are high/low charges
that make up binary words. Don't worry too much about serial connections yet;
we cover them more in the next section. For now, understand that the BASIC
Stamp can receive a command easily from a Linux system over a serial cable
and turn on a servo that drives our cat feeder.

 Linux and the STAMP

Parallax has done a great job of creating a fun community of hobbyists. Two
mailing lists are devoted to its products, and dozens of sites have ideas for
projects. Although the best integrated development environment for the BASIC
Stamp is available only for Microsoft Windows, a tool called bstamp has been
created, with Parallax's help, to program a BASIC Stamp with Linux. An example
of tokenizing a program and running it, follows:

bstamp_tokenize catcode.bs2 catcode.tok
PBASIC Tokenizer Library version 1.16

bstamp_run catcode.tok
Model: Basic Stamp 2
Firmware version BCD = 16
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
Ack = 0
DEBUG OUTPUT: (Press [Control]-[C] to complete sequence)

Waiting for Command
Received Command: B
Feed the kitty!
Waiting for Command
Received Command: B
Feed the kitty!
Waiting for Command

__
Received [Control]-[C]!
Shutting down communication!

 The Much-Maligned Serial Cable

Everything I know about serial, I learned from the excellent “Serial Howto” by
David S. Lawyer and Greg Hankins. It's a thick document, with a lot of
interesting, low-level information about the RS-232 standard.

Although the BASIC Stamp communicates with bstamp over a serial connection,
the serial port provided with the Homework Board is not a good candidate for
true serial communication. Parallax wired the port in a nontraditional way. For
one thing, all commands sent to the port are echoed back to the host, which
makes two-way communication difficult.

The RS-232 standard dictates that the electrical signals that travel along our
cable be +/- 12V. Because of this, if we hook up a serial connection directly to
our Stamp I/O pins, we most likely will burn it out, as it expects +5V. The
solution is to use an intermediary to lower the 12V signal coming from the PC
to 5V and boost the 5V signal coming from the Stamp to 12V. Such a chip does
exist, and it is called a MAX232. Luckily, you can get a MAX232-based RS-232-
compliant adapter specifically built for solderless breadboards from a Texan
named Al Williams. The device is called the RS-1, and a link to his Web site is
included in the on-line Resources for this article.

Starting with the 2.4 kernel, Linux names serial ports as /dev/ttyS0, 1, 2, 3 and
so on. These device files act like any other file. You open them, read or write to
them and close them. The OS buffers reads and writes with a 16k buffer, which
is more than adequate for most serial communication. This is good; you don't

have to worry about losing bits simply because you weren't reading at the exact
moment your device sent them across the wire. It also means you need to flush
the buffers explicitly on the OS side when you're ready to send.

Because the port is treated as a file, you need to set the permissions
accordingly. In my case, because I ultimately want a CGI program to drive the
feeder, I made apache the owner. If you're in a secure environment, you always
could chmod 777 /dev/ttyS0, but this obviously is insecure. It's best to
decide up front what you want to do with your port and set the permissions in
as secure a way as possible.

 Python Takes Control

Because Linux treats our serial port as a file, it's easy to use Python to talk to
the Stamp. Python's file object makes it simple to read and write files:

>>> f = open("/tmp/cotton.txt",'w')
>>> f.write("Cotton loves treats!")
>>> f.close()
>>> f = open("/tmp/cotton.txt",'r')
>>> f.read()
'Cotton loves treats!'
>>> f.close()

As you can see, however, although it's easy to open and close a file, doing so
could get tricky if that file actually is a serial port. Fortunately for us, our Python
script needs to write only a letter at a time to tell the feeder to dispense a treat.
That said, I wanted to use as robust a method of communication as possible,
and all this opening and closing worried me, as I see this project as something
that always will be a work in progress. Maybe the cats will want to hit a button
that sends us a message at work, who knows? The point is, I wanted something
that was more serial-aware than a straight file handle. Luckily, someone else
wanted the exact same thing. Chris Liechti has been nice enough to create
PySerial for exactly this sort of situation. Here's an example of PySerial in
action:

>>> import serial
>>> sp = serial.Serial(0)
>>> sp.portstr
'/dev/ttyS0'
>>> sp.write("F")
>>> sp.readline()

We don't actually open /dev/ttyS0, we open 0. PySerial is smart enough to know
we mean the first serial port and opens it accordingly. This also means that
PySerial is cross-platform, so you don't have to know that your port is /dev/
ttyS0 on one machine and /dev/ttya on another. It's all handled by PySerial.

Now that Python is talking over the serial port, we need to get it on-line. I admit,
I'm not terribly fond of Python in a CGI environment. Don't let that stop you
though; there's a working group whose mission it is to see the CGI libraries
improved, and several Python Web frameworks make CGI unnecessary. In
addition, mod_python, in its latest release, has included Python Server Pages
(PSP), a PHP-like syntax for mixing Python directly into an HTML page. In short,
you have a lot of options when it comes to using Python on-line. For our
purposes, however, the Python CGI library is more than enough to keep our
kittens well fed.

Here's a brief CGI example for a bare-bones cat feeder:

#!/usr/bin/env python
import serial
import cgi

class Feeder:
 def __init__(self):
 self.port = serial.Serial(0)
 def feed(self):
 self.port.write("B")

print 'Content-Type: text/html'
print # Blank line marking end of HTTP headers

cgiParameters = cgi.FieldStorage()
control = Feeder()
control.feed()

print "<p>Thanks for feeding the kittens!"

First of all, I import the PySerial and CGI modules and then I declare a class
feeder. The constructor for the class opens the serial port. The class has one
method, feed, which sends an arbitrary character, in this case B, down the wire
to the feeder. On the other end, PBASIC is listening for the character B and
dispenses a treat when it sees it.

 Let's Feed the Kittens!

I built the cat feeder with a carousel design, where the treats would be put into
cells, divided by a rotating paddle, driven by a servo. When the paddles rotate,
a load of treats drops through a cutout in one of the cells to a food bowl. I used
a container meant for storing frozen waffles for the carousel, with a custom cut
rotating paddle and a Parallax servo to drive it all. The whole assembly,
including the BASIC Stamp circuit, is housed in a plastic storage box in my home
office. The box is connected to my Web server on /dev/ttyS0 for the feeder and
/dev/ttyS1 for the debug port. Figure 1 is a picture of the cat feeder on my shelf.
I'm using Fedora Core 1, with Apache 2.0.48.

Figure 1. Cotton Getting a Treat from the Feeder

The initial problem was how do I determine that the paddles have rotated
enough to drop the treats and stop them from rotating? The easiest solution
was to put a small sensor on the side of the carousel that would detect a
paddle passing in front of it. I chose a sensor from Parallax used primarily to
find a black line on the ground. I put a flat black piece of posterboard on the
edge of each paddle and the sensor on the bottom of the carousel right after
the edge of the hole. When the feeder feeds, the sensor detects when the first
paddle moves past; when the second paddle passes the sensor, the servo
stops.

I wired up the Stamp relatively quickly over a few days of experimenting. The
attached breadboard is a great feature of the Homework Board. I was able to
rewire and test circuits quickly without having to solder and desolder. Figure 2
shows the completed schematic. Figure 3 is a picture of the wired-up
Homework Board.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7403f2.large.jpg

Figure 2. The Feeder Circuit

Figure 3. The Completed Circuit

Writing the code for the BASIC Stamp mostly was a matter of cutting and
pasting code examples from the Parallax Web site. Listing 1 is the final code

https://secure2.linuxjournal.com/ljarchive/LJ/129/7403f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7403f2.large.jpg

that I used on the Stamp. PBASIC relies heavily on GOTO statements for flow
control, which took some getting used to on my part.

Listing 1. The Feeder PBASIC Code

'{$STAMP BS2}
cmd VAR Byte
temp VAR Word
LineSnsrPwr CON 10
LineSnsrIn CON 9
Sense VAR Word
SStart VAR Word

main:
 DEBUG "Waiting for Command", CR
 SERIN 7, 84, [cmd]
 DEBUG "Received Command: ", cmd, CR
 IF cmd = "B" THEN feed
 GOTO main

feed:
 DEBUG "Feed the kitty!", CR
 HIGH LineSnsrPwr ' activate sensor
 HIGH LineSnsrIn ' discharge QTI cap
 PAUSE 1
 RCTIME LineSnsrIn, 1, SStart
 DEBUG "First Reading: ", DEC SStart, CR
 GOTO sensor

feed2:
 IF Sense < (SStart - 200) THEN pastfirst
 IF Sense > (SStart + 200) THEN stopfeed
 FOR temp = 1 TO 100
 PULSOUT 0,600
 GOTO sensor

sensor:
 HIGH LineSnsrPwr ' activate sensor
 HIGH LineSnsrIn ' discharge QTI cap
 PAUSE 1
 RCTIME LineSnsrIn, 1, Sense
 GOTO feed2

pastfirst:
 DEBUG "Past First!", CR
 SStart = Sense
 GOTO sensor

stopfeed:
 DEBUG DEC Sense, CR
 GOTO main

Listing 2 shows the complete Python code we use to drive the feeder. The CGI
script uses the built-in shelf module for Python; shelf allows you to store live
objects in a DBM database. In addition to shelf, I'm also using the Cheetah
Template engine. The line t =
Template(open('feeder.tmpl.py').read()) opens an HTML
template called feeder.tmpl.py, reads the contents and uses it as the Cheetah
template. The template format looks something like <p>The cats have
been fed $fed times</p>. When we set the template variable, t.fed, to
some number (say 5), the line then becomes <p>The cats have been

fed 5 times</p>. My wife, a graphic designer by trade, whipped up some
graphics for the page.

Listing 2. The Final Python CGI Code

#!/usr/bin/python
import serial
import cgi
from Cheetah.Template import Template
import shelve

t = Template(open('feeder.tmpl.py').read())
port = serial.Serial(0)

class Feeder:
 def __init__(self):
 self.total_fed = 0
 def feed(self):
 self.total_fed = self.total_fed + 1
 port.write("B")
 def getTotalFed(self):
 return self.total_fed

print 'Content-Type: text/html'
print # Blank line marking end of HTTP headers

form = cgi.FieldStorage()

d = shelve.open("feeder.dbm")
if d.has_key("control"):
 """ if shelf file exists, open it, otherwise create
 it and a new instance of the Feeder class """
 control = d['control']
else:
 control = Feeder()
 d['control'] = control

if form.has_key("command") and \
form['command'].value == 'feed':
 """ if we received the feed command,
 feed, otherwise, show the index page"""
 control.feed()
 contents = """
 <p class="header">
 Thanks for the Treat!</p>
 <p class="body">Meow!</p>
 <p valign="bottom">
 Back</p>"""

else:
 """The index welcome page"""
 contents = """
 <p class="header">Cotton & Tulip Love Treats!</p>
 <p class="body">
 Click the Fish Below to Give
 Cotton and Tulip a Treat</p>
 <p>

 </p>
 <p>
<p>
 <p class="footer" valign="bottom">
 The kitten feeder is an honest to goodness device
 attached to a Linux Server in Chris and Camri's
 apartment.
 """
"""Set the variables that Cheetah will use"""
t.contents = contents
t.fed = control.getTotalFed()
"""Print the complete Page"""
print t

"""Save the control to our shelf"""

d['control'] = control
d.close()

The cat feeder is open for business. Occasionally, a treat jams up the works, but
95% of the time, the cats get a stinky little fish. We already have plans for cat
feeder v.2.0. We'd love to add a Webcam to see the kittens during the day, as
well as move the device to a wireless laptop in the kitchen. The feeder is, as
with most of our projects, a work in progress. Feel free to go to the Web site
and give Cotton and Tulip a treat.

Resources for this article: /article/7741.

Chris McAvoy is a UNIX Administrator in Chicago, Illinois. He lives with his wife,
Camri, and their two cats, Cotton and Tulip. Chris and Camri have a lot of
hobbies. Their Web site is www.lonelylion.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7741.html
http://www.lonelylion.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Application Defined Processors

Dan Poznanovic

Issue #129, January 2005

By rebuilding a system's logic on the fly, this project can make one FPGA do the
work of tens or hundreds of ordinary processors.

Application defined processors are based on the concept of reconfigurable
computing (RC). RC is a computing technology that blurs the line between
software and hardware and provides the basis for the next big steps forward in
delivering high performance with reduced power and space requirements. RC
is implemented using hardware devices that can be reconfigured. Processors in
an RC system are created as hardware that is optimized for the application that
executes in it.

This article explains RC, examines SRC systems that implement RC and shows
the performance advantage RC provides over traditional microprocessors. We
also explore the programming model for RC and discuss the potential RC
provides for supporting Open Hardware.

 What Is Reconfigurable Computing and Why Do I Care?

RC is a form of computing based on hardware that can be created dynamically
for each application that will run in it. RC hardware is comprised of chips whose
logic is defined dynamically rather than at the time the chips are fabricated. RC
has been around for many years and implemented in a number of different
hardware components, such as field programmable gate arrays (FPGAs), field
programmable object arrays (FPOAs) and complex programmable logic devices
(CPLDs). What is important to application developers is that today's
reconfigurable chips have a clock rate and capacity that make it practical to do
large-scale computing with RC hardware.

The most familiar chip type used to implement RC is the FPGA. An FPGA is a
chip composed of SRAM memory cells used to define a configuration for the
chip. FPGAs contain logic gates, flip-flops, RAMs, arithmetic cores, clocks and

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

configurable wires to provide interconnection. FPGAs can be configured to
implement any arbitrary logic function and, therefore, can be used to create
custom processors that can be optimized to an application.

So, a collection of FPGAs could be configured to be a MIPS, SPARC, PowerPC or
Xeon processor, or a processor of your own design. In fact, the processor need
not even be an instruction processor. It could be a direct execution logic (DEL)
processor that contains only computational logic requiring no instructions to
define the algorithm.

DEL processors hold great potential for high performance. A DEL processor can
be created with exactly the resources required to perform a specific algorithm.
Traditional instruction processors have fixed resources, adders, multipliers,
registers and cache memory and require significant chip real estate and
processing power to implement overhead operations, such as instruction
decode and sequencing and cache management.

DEL processors are reconfigurable computers created for each application in
contrast to a fixed architecture microprocessor where one size fits all. A DEL
processor delivers the most efficient circuitry for any particular application in
terms of the precision of the functional units and parallelism that can be found
in the algorithm. Being reconfigurable, a unique DEL processor can be created
for each application in a fraction of a second.

But why do you care that a DEL processor can be created dynamically for an
application, and that it uses its chips more effectively than a microprocessor?
The answer is simple: performance and power efficiency. A DEL RC processor
can be created with all of the parallelism that exists within an algorithm without
the overhead present in a microprocessor. For the remainder of this article, RC
processors are assumed to be implemented using FPGAs in order to be more
specific in the discussion.

 How Is that High Performance Achieved?

Performance in RC processors comes from parallel execution of logic. RC
processors are completely parallel. In fact, the task of constructing the logic for
a given algorithm is to coordinate the parallel execution such that intermediate
results are created, communicated and retained at the proper instants in time.

A DEL processor is constructed as a network of functional units connected with
data paths and control signals. Each computational element in the network
becomes active with each clock pulse. Figure 1 shows a fragment of logic for
computing an expression and contrasts the utilization of the chip versus a von
Neumann instruction processor, like the Intel Pentium 4 microprocessor.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f1.large.jpg

Figure 1. Direct execution logic can put all logic gates to work on the real problem.

Even though a microprocessor can operate at a clock frequency of 3GHz and
the FPGA chips operate in the 100–300MHz frequency range, the parallelism
and internal bandwidth on a DEL processor can outperform the
microprocessor by orders of magnitude better delivered performance. Figure 2
presents some benchmark comparisons between SRC's DEL processor, MAP,
and a typical von Neumann instruction processor, the Intel Xeon 2.8GHz
microprocessor. Parallel execution of exactly the required number of functional
units, high internal bandwidth, elimination of instruction processing overhead
and load/store elimination all contribute to overcoming the 30× difference in
clock frequency between the MAP and the Intel microprocessor.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f2.large.jpg

Figure 2. Number of 2.8GHz microprocessors required for the same performance as a MAP
direct execution logic processor.

 But Can a DEL Processor Run Linux?

DEL-based processors could run Linux, but do they need to? Code segments
within the Linux kernel certainly might benefit in performance from running on
a DEL processor, and applications within the Linux distributions also could
achieve higher performance. However, the role of an operating system, and the
kernel in particular, is to manage the hardware such that applications achieve
their required performance levels. In other words, the OS is supposed to stay
out of the way and let applications consume the hardware.

Applications do a lot more than intense computation. They interact with users,
read and write files, display results and communicate with the world through
Internet connections. Thus, applications require both computational resources
and the services of an operating system. Heavy computation with high
parallelism benefits from DEL processors. Although serial code could run as
DEL, it is best serviced in a traditional microprocessor.

The best combination of hardware for running most applications is a mix of
microprocessor and DEL processors. This combination allows applications to
achieve orders of magnitude performance gains while still running in a
standard Linux environment with all of the OS services and familiar support
tools. The portion of an application that is predominantly sequential or that
requires OS services can run in a traditional microprocessor portion of a

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f2.large.jpg

system, while applications and even portions of the OS that benefit from the
DEL parallelism run on a closely coupled DEL processor.

 SRC Computers, Inc.'s RC System

SRC has created systems that are composed of DEL processors and
microprocessors. SRC systems run Linux as the OS, provide a programming
environment called Carte for creating applications composed of both
microprocessor instructions and DEL, and support microprocessor and DEL
processor hardware in a single system.

 The DEL Processor—MAP

The patented MAP processor is SRC's high-performance DEL processor. MAP
uses reconfigurable components to accomplish control and user-defined
compute, data prefetch and data access functions. This compute capability is
teamed with very high on- and off-board interconnect bandwidth. MAP's
multiple banks of dual-ported On-Board Memory provide 11.2GB/sec of local
memory bandwidth. MAP is equipped with separate input and output ports
with each port sustaining a data payload bandwidth of 1.4GB/sec. Each MAP
also has two general-purpose I/O (GPIO) ports, sustaining an additional data
payload of 4.8GB/sec for direct MAP-to-MAP connections or data source input.
Figure 3 presents the block diagram of the MAP processor.

Figure 3. Block Diagram of MAP

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f3.large.jpg

 Microprocessor with SNAP

The Dense Logic Devices (DLDs) used in these products are the dual-processor
Intel IA-32 line of microprocessors. These third-party commodity boards are
then equipped with the SRC-developed SNAP interface. SNAP allows commodity
microprocessor boards to connect to, and share memory with, MAPs and
Common Memory nodes that make up the rest of the SRC system.

The SNAP interface is designed to plug directly in to the microprocessors'
memory subsystem, instead of its I/O subsystem, allowing SRC systems to
sustain significantly higher interconnect bandwidths. SNAP uses separate input
and output ports with each port currently sustaining a data payload bandwidth
of 1.4GB/sec.

The intelligent DMA controller on SNAP is capable of performing complex DMA
prefetch and data access functions, such as data packing, strided access and
scatter/gather, to maximize the efficient use of the system interconnect
bandwidth. Interconnect efficiencies more than ten times greater than a cache-
based microprocessor using the same interconnect are common for these
operations.

SNAP either can connect directly to a single MAP or to SRC's Hi-Bar switch for
system-wide access to multiple MAPs, microprocessors or Common Memory.

 SRC-6 System-Level Architectural Implementation

System-level configurations implement either a cluster of MAPstations or a
crossbar switch-based topology. Cluster-based systems, as shown in Figure 4,
utilize the microprocessor and DEL processor previously discussed in a direct
connected configuration. Although this topology does have a microprocessor-
DEL processor affinity, it also has the benefit of using standards-based
clustering technology to create very large systems.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f4.large.jpg

Figure 4. Block Diagram of Clustered SRC-6 System

When more flexibility is desired, Hi-Bar switch-based systems can be employed.
Hi-Bar is SRC's proprietary scalable, high-bandwidth, low-latency switch. Each
Hi-Bar supports 64-bit addressing and has 16 input and 16 output ports to
connect to 16 nodes. Microprocessors, MAPs and Common Memory nodes can
all be connected to Hi-Bar in any configuration as shown in Figure 4. Each input
or output port sustains a yielded data payload of 1.4GB/sec for an aggregate
yielded bisection data bandwidth of 22.4GB/sec per 16 ports. Port-to-port
latency is 180ns with Single Error Correction and Double Error Detection
(SECDED) implemented on each port.

Hi-Bar switches also can be interconnected in multitier configurations, allowing
two tiers to support 256 nodes. Each Hi-Bar switch is housed in a 2U-high, 19-
inch wide rackmountable chassis, along with its power supplies and cooling
solution, for easy inclusion into rack-based servers.

Figure 5. Block Diagram of SRC-6 with Hi-Bar Switch

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f5.large.jpg

SRC servers that use the Hi-Bar crossbar switch interconnect can incorporate
Common Memory nodes in addition to microprocessors and MAPs. Each of
these Common Memory nodes contains an intelligent DMA controller and up to
8GBs of DDR SDRAM. The SRC-6 MAPs, SNAPs and Common Memory node (CM)
support 64-bit virtual addressing of all memory in the system, allowing a single
flat address space to be used within applications. Each node sustains memory
reads and writes with 1.4GB/sec of yielded data payload bandwidth.

The CM's intelligent DMA controller is capable of performing complex DMA
functions such as data packing, strided access and scatter/gather to maximize
the efficient use of the system interconnect bandwidth. Interconnect
efficiencies more than ten times greater than a cache-based microprocessor
using the same interconnect are common for these operations.

In addition, SRC Common Memory nodes have dedicated semaphore circuitry
that also is accessible by all MAP processors and microprocessors for
synchronization.

 Programming Model for Reconfigurable Computing

Traditionally, the programming model for RC has been one of hardware design.
Given that the tools required for the underlying FPGA technology of RC are all
logic design tools from the Electronic Design Automation industry, there really
has not been a programming environment recognizable to a software
developer. The tools have supported Hardware Definition Languages (HDLs)
such as Verilog, VHDL and Schematic Capture.

With the introduction of system-on-a-chip (SOC) technology and the complexity
associated with hardware definition of such complexity, high-level languages
have begun to be available. Java and C-like languages are becoming more
common for use in programming RC chips. This is a significant step forward but
continues to require quite a leap by application programmers.

The SRC programming model is the traditional software development model
where C and Fortran are used to program the MAP processor, and any
language capable of linking with the runtime libraries (written in C) can be
compiled and run on the microprocessor portion of the system.

The SRC Carte programming environment was created with the design
assumption that application programmers would be writing and porting
applications to the RC platform. Therefore, the standard development
strategies of design, code in high-level languages (HLLs), compile, debug via
standard debugger, edit code, recompile and so on, until correct, are used to
develop for the SRC-6 system. Only when the application runs correctly in a

microprocessor environment is the application recompiled and targeted for the
DEL processor, MAP.

Compiling to hardware in an RC system requires two compilation steps that are
quite foreign to programming for an instruction processor. The output of the
HLL compiler must be a hardware definition language. In Carte, the output
either is Verilog or Electronic Design Interchange Format (EDIF). EDIF files are
the hardware definition object files that define the circuits that will be
implemented in the RC chips. If Verilog is generated, then that HDL must be
synthesized to EDIF using a Verilog compiler such as Synplify from Synplicity.

A final step, place and route, takes the collection of EDIF files and creates the
physical layout of the circuits on the RC chip. The output files for this process
are a configuration bitstream, which can be loaded into an FPGA to create the
hardware representation of the algorithm being programming into the RC
processor.

The Carte programming environment performs the compilation from C or
Fortran to bitstream for the FPGA without programmer involvement. It further
compiles the codes targeted to microprocessors into objects modules. The final
step for Carte is the creation of a unified executable that incorporates the
microprocessor object modules, the MAP bitstreams, and all of the required
runtime libraries into a single Linux executable file. Figures 6 and 7 present the
Carte compilation process.

Figure 6. Carte Programming Environment

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f6.large.jpg

Figure 7. Carte Compilation

 Open-Source Hardware Opportunity

Linux has led the way and benefited greatly from the Open Source movement
where a large and dedicated group of software developers has created,
modified and improved the Linux kernel and OS at a rate, quality and level of
innovation that could not be matched by the work of a single commercial
organization. Reconfigurable computing has the potential of enabling such
innovation and technical advances in hardware design. Much of this article is
spent explaining the concept of application programmers writing code and
using standard programming methods to create application-specific hardware
without requiring knowledge of hardware design. However, in RC the building
blocks of the generated hardware created by application programmers is the
functional unit. Functional units are basic computational units such as adders,
floating-point multipliers or trigonometric functions. Functional units also can
be specialty high-performance units, like triple DES functions, or nonstandard
precision arithmetic units, such as 24-bit IEEE floating-point operators.

Functional units are created by logic designers. RC compilers, such as SRC's
Carte MAP compiler, are capable of allowing customer-supplied functional units
to be added to the standard set of operations supported by the compiler. When
new and novel functional units are made available to application programmers,
an even higher level of performance can be achieved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7731f7.large.jpg

It is in the creation and sharing of innovative hardware designs for functional
units where an Open Hardware movement could bring substantial advances to
computational science. The innovation and productivity seen in the open-
source arena could be replicated as Open Hardware.

RC provides a vehicle for many more creative designers to create new and
novel hardware that can be used by application developers. Through groups
like Opencores.org, functional unit design can be shared and improved upon.
The significant advances seen in the computational sciences, due to open-
source software, easily could be seen through a movement focused on open
hardware as well.

 Code Example

To show the performance advantage of a DEL processor, a string-matching
example is presented. The code for these examples is available on the Linux
Journal FTP site—see the on-line Resources. This example came from the Web
site of Christian Charras and Thierry Lecroq, referenced by NIST Dictionary of
Algorithms and Data Structures. For comparison, the Brute Force and Boyer-
Moore string-matching algorithms are implemented for the 2.8GHz Intel Xeon
via Intel's C++ 8.0 compiler for Linux. The Brute Force algorithm is implemented
for SRC's system using the Carte 1.8 Programming Environment. The Brute
Force algorithm is a straightforward character-by-character comparison
between a pattern and a text string. The Boyer-Moore is considered the most
efficient string-matching algorithm. The example takes a randomly generated
20MB text string and searches for six and ten randomly generated patterns.
Compilations are done with a -O3 optimization setting, and performance
comparisons are shown in Table 1. Adding four additional search patterns to
the test increases the microprocessor times but has no impact on the MAP
execution times due to the pipelined logic. Though the Xeon runs at 2.8GHz,
and the MAP runs at 100MHz, the parallelism seen in DEL can achieve a 99×
performance advantage in MAP. This example required 60% of one FPGA in the
MAP. A two-chip compile would deliver over 200× performance.

Table 1. String-Matching Performance

Implementation Text Size Patterns Search Time Speedup

Brute Force (Xeon) 20MB 6 0.827 sec 1.00×

Boyer-Moore (Xeon) 20MB 6 0.597 sec 1.38×

Brute Force (MAP) 20MB 6 0.0143 sec 57.75×

Brute Force (Xeon) 20MB 10 1.398 sec 1.00×

To demonstrate the impact of adding additional computation into a pipelined
loop, and the ability to introduce custom functional units, a second
performance comparison is done in which a DES-encrypted string is passed to
the search routine. The string must be decrypted prior to searching. In the case
of the MAP implementation, a DES pipelined functional unit is introduced. The
Verilog definition was obtained from Opencores.org and introduced into the
search loop. Because the loop is pipelined, it continues to deliver a set of
results per clock cycle. Therefore, the elapsed time for the 20MB text search,
including a DES decryption, is unchanged from the search alone. This leads to a
very dramatic 232× speedup over the microprocessor implementation. The ten-
pattern MAP example uses only 74% of an FPGA, so a two-chip compile for the
MAP would yield 460×.

Table 2. Performance for Searching an Encrypted String

In the case of DES implemented on the Xeons, the code is an optimized code by
Stuart Levy at Minnesota Supercomputer Center.

 Conclusion

This article has explained reconfigurable computing, shown examples of the
methods and the results that can be achieved. Significant performance gains
can be demonstrated. In the present, RC has much to contribute to
computational science, but the future holds advances well beyond the Moore's
Law gains experienced in the world of microprocessors. RC is accessible to
today's programmers using a familiar programming model and provides the
framework within which a larger population of hardware designers can have an

Implementation Text Size Patterns Search Time Speedup

Boyer-Moore (Xeon) 20MB 10 1.051 1.33×

Brute Force (MAP) 20MB 10 0.0141 sec 98.81×

Implementation Text Size Patterns Search Time Speedup

DES-Brute Force (Xeon) 20MB 6 2.77 sec 1.00×

DES-Boyer-Moor (Xeon) 20MB 6 2.63 sec 1.05×

DES- Brute Force (MAP) 20MB 6 0.0143 sec 193.09×

DES-Brute Force (Xeon) 20MB 10 3.31 sec 1.00×

DES-Boyer-Moor (Xeon) 20MB 10 3.11 sec 1.06×

DES- Brute Force (MAP) 20MB 10 0.0143 sec 231.76×

impact on high-performance computation through open-source creativity and
productivity.

RC has been a long time in coming, but the enabling software and hardware
technology has set the stage for RC to become part of every computer, from
embedded processor to Peta-Scale supercomputer.

Resources for this article: /article/7867.

Dan Poznanovic (poz@srccomp.com) is VP Software Development at SRC
Computers, Inc., and has been involved in the high-performance computing
world since initially joining Cray Research, Inc., in 1987.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7867.html
mailto:poz@srccomp.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Finding Stubborn Bugs with Meaningful Debug Info

John Goerzen

Issue #129, January 2005

When a user reports a bug you can't duplicate, let your application help you
find the problem. Add logging now and be a debugging master after the
software gets deployed.

Bug tracking is often one of the most difficult processes in software
development. Users may have situations different from developers, and bugs
that are a big problem for users may not even be visible on developers'
machines. Sometimes bugs can come and go, or networked programs may
encounter bugs only when talking to specific servers or clients. In this article, I
discuss techniques software developers can employ to help track down bugs
more easily.

First, I discuss two ways to make it easier to receive and manage bugs, and then
I show how to make your programs generate more useful debugging output.
Then, I talk about tracking down troublesome bugs. Finally, I cover some
practices that can help prevent bugs in the first place. Many of the techniques
described in this article are employed in OfflineIMAP (see “Fast Convenient Mail
for Travel: OfflineIMAP”, LJ, March 2004).

 Tracking Bugs

Before examining how to make better bug reports possible, a critical first step
is making sure you can deal with the bug reports you receive. For some small
projects, simply publishing an e-mail address is sufficient. However, most
projects need something more. Developers often get busy and forget about
things. Bugs may be complicated to solve, requiring input from several people,
or there simply may be a lot of bug reports.

A bug-tracking system (BTS) is a great way to help ensure that bugs are not
forgotten. Most BTS implementations provide a way to track correspondence,
handle attached files and delegate responsibility to particular people. Some

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

also support categorization based on things such as severity, user environment
and specific components.

If your project is hosted at a project hosting site such as SourceForge or
Savannah, you already have a BTS available for your use. You should use it and
encourage your users to submit bugs through that interface rather than to a
mailing list.

If you need more flexibility, you can find BTS programs for Linux. Some of the
most popular free software BTS programs are:

• Bugzilla, the BTS used by the Mozilla Project, is a flexible system primarily
used through its Web interface.

• Request Tracker can be used as both a bug-tracking system and a
support-tracking system. It features both Web and e-mail interfaces,
though some administrative functions can occur only through the Web
interface.

• Jitterbug is the BTS used by the Samba Project. It is similar in concept to
Bugzilla but is more lightweight.

• Debbugs is the BTS used by the Debian Project. Debbugs has a Web
interface, though it is read-only; all manipulations occur by e-mail.
Debbugs is best suited for large projects with clearly identifiable
components and responsibility for those components.

I personally prefer Request Tracker, because it seems to have a nice blend of
features for a BTS. Your own requirements may differ.

 Make It Easy to Submit Bugs

Sometimes I find a nasty bug in a program and want to report it. But to do so, I
have to fill out a detailed questionnaire and perhaps divulge information I'd
rather not. It should be easy for people to submit bugs and the information
needed to track them down. If you take submissions on the Web, make the
process simple. Don't require too much information, and accept submissions
even if people don't know some information. Don't expect users to know
anything about the different components of the project or which developers
are responsible for a given problem.

 Logging

When tracking down problems, you often want to know what state the program
is in. Other times, you may want to know what actions were carried out prior to
triggering the bug. Because users of programs don't necessarily have expertise
with your code and a debugger, logging often is called for. Logging simply
means writing out a record of the actions carried out. Simple programs might

merely print out information, but usually you'll want something a little more
capable.

Non-interactive programs, such as network servers, do not have a screen on
which to display information. These programs often maintain a log file or use
the syslog facility built in to Linux and UNIX systems.

Interactive programs may display information on-screen or also may generate a
file. Having a log file available can make bug reporting easier, because the user
simply can attach it to a bug report.

Sometimes, you might need quite a bit of data to figure out what's going on
with a specific problem. However, all this data may be overkill for a normal
session—it could flow right off a user's screen or fill up a hard disk. Therefore,
many programs have a notion of a log level. The user can set, at runtime, how
much information should be logged. Some programs even may have log
categories, where users can configure which types of information are logged.
OfflineIMAP uses this approach. For troublesome problems, users can turn on a
communications log, which logs all data sent to or received from the IMAP
server.

Python 2.3 introduced a useful module called logging. The logging module
provides a uniform interface to several different ways of logging messages. Its
supported logging methods include writing messages to files, network services,
syslog, e-mailing messages and several others. The following is a simple
example that illustrates use of the logging module:

#!/usr/bin/env python
import logging, sys

Create the logger object
l = logging.getLogger('testlog')

Create a handler and assign it to the object
handler = logging.StreamHandler(sys.stderr)
l.addHandler(handler)

Levels are DEBUG, INFO, WARNING, ERROR, CRITICAL.
Set the default level here. Any log messages
beneath that level are dropped.
l.setLevel(logging.INFO)

Try it out.

l.debug("Debug message -- system initialized.")
l.info("Here's some info. I've just debugged.")
l.warning("I don't have many messages left.")
l.error("Only one more message to go.")
l.critical("Nothing else to do!")

This program begins by initializing the logger. It uses the StreamHandler to
write logged text to standard error. It also sets the log level to INFO. Then it logs
five messages. When you run this program, you see only the last four. The
debug message was filtered out by setting the level to INFO. Many programs

have a configuration or command-line option to set the level at runtime. You
can use different logging methods simply by adding a different handler to your
Logger object. The Python documentation has a reference for all the available
handlers.

 Check Input

Make sure the input you are receiving is valid. For instance, if you are expecting
something on the command line, check to make sure you have the appropriate
number of arguments before trying to use them (or trap the resulting
exception). This gives users a better error message. Here's a sample Python
program that demonstrates this:

#!/usr/bin/env python
import sys

try:
 print "You supplied: %s" % sys.argv[1]
except IndexError:
 print "You forgot an argument."

 Handle Exceptions

Several programming languages, such as Java, Python and OCaml, include
support for exceptions. With exceptions, you can catch errors at the place you
choose, rather than having to check and handle errors with each call that may
produce a problem. Sometimes, it might be correct to let exceptions go
unhandled, but usually that is not the case. Exceptions should be caught and
handled. Although it may be appropriate to terminate the program if you can't
open the file a user asks for, it is still better to do so with an error message
giving the filename and problem rather than let the user receive an ugly
exception message.

 Capture Exceptions

For exceptions that really are fatal to your program, you still may want to
capture them. This would allow you, for instance, to log them to a file or display
the exception in a pop-up box in the GUI application. This makes it easier for
users to send the stack trace back to you. You also can use a generic exception
catcher to perform other activities, perhaps output contents of various buffers
to help you figure out what was going on at the time.

The following is an example that logs any exceptions along with some
information about the program currently running. It then re-raises the
exception and exits:

#!/usr/bin/env python
import logging, sys, StringIO, traceback, os

l = logging.getLogger('testlog')

handler = logging.StreamHandler(sys.stderr)
l.addHandler(handler)
formatter = logging.Formatter("LOG: %(message)s")
handler.setFormatter(formatter)

l.setLevel(logging.INFO)

def logexception():
 sbuf = StringIO.StringIO()
 traceback.print_exc(file = sbuf)
 excval = sbuf.getvalue()
 l.critical(" *** Exception Detected ***")
 l.critical("Current PID: %d" % os.getpid())
 l.critical("Program name: %s" % sys.argv[0])
 l.critical("Command line: %s" % \
 str(sys.argv[1:]))
 for line in excval.split("\n"):
 l.critical(line)

def main():
 print "Hello, I'm running."
 raise RuntimeError("Oops! I've had a problem!")

try:
 main()
except:
 logexception()
 raise

When you run this program, you should see something like this on your screen:

Hello, I'm running.
LOG: *** Exception Detected ***
LOG: Current PID: 28441
LOG: Program name: /tmp/logerror.py
LOG: Command line: []
LOG: Traceback (most recent call last):
LOG: File "/tmp/logerror.py", line 30, in ?
LOG: main()
LOG: File "/tmp/logerror.py", line 27, in main
LOG: raise RuntimeError("Oops! I've had a problem!")
LOG: RuntimeError: Oops! I've had a problem!
LOG:

Here, the exception handler found the exception, grabbed the information
about it and was able to log it. You also can see the traceback a second time.
The raise statement at the end of the program causes the exception to be
raised and handled in the normal fashion also. This means it aborts your
program with a traceback. Depending on your requirements, you may opt to
use sys.exit() to terminate instead.

 Finding Reported Bugs

Now that you have some ways to help users submit good bug reports, let's look
at ways to use those bug reports to track down problems. Armed with a log and
perhaps traceback information, here are some questions to ask yourself:

• Can I duplicate the bug in my environment? If you can duplicate the
problem on your own machine, you're a long way toward being able to

resolve it easily. Use a debugger or other tool to track it down now that
you can trigger it at will.

• Was the input and output what I expected? Perhaps the user supplied a
value you didn't contemplate when you wrote the program. Or, perhaps a
network client or server treats a protocol slightly differently from what
you expected. Maybe the input or output is itself malformed, and the bug
isn't even in your program. A debug log showing all I/O can be very helpful
here.

• Was the program flow as expected? If your log calls to various functions or
methods, you should be able to trace the flow of execution in a program.
Perhaps certain conditions cause vital code to be skipped, leading to
trouble later on.

• Where was the last point of correct execution? This may have been right
before the error, or perhaps incorrect data was passed around for some
time prior to a crash. Pinpointing the most recent time in the program's
history where it was functioning normally can help track down the precise
place where things went awry.

• If a traceback is on-hand, does the stack look normal? Check to make sure
the function calls are as expected and that the data passed to them looks
legitimate.

 Preventing Bugs

All the techniques I've described in this article are useful, but they shouldn't be
deployed in a vacuum. It's also important to adopt practices that help reduce
the likelihood of bugs occurring. Here are some to consider:

• Adopt unit testing. Java, Python, OCaml, Perl and C all have unit testing
frameworks available. Use them and exercise as many code paths as
possible. This is especially important for a language such as Python where
certain executions of a program may not even parse all of your code. It
also can be important for Java; for instance, runtime exceptions can occur
due to improper casting to or from Object.

• Avoid globals. Avoiding global (or class-global) variables helps isolate
problems and helps prevent synchronization issues in multithreaded
programs. Global variables can be the source of unexpected side effects
in function calls, which can be hard to track down.

• Use the right tool for the job. Languages each have their own strengths
and weaknesses, and no single language is the best tool for every task.
For instance, although Perl makes it easy to parse delimited text files with
regular expressions, OCaml provides tools specifically designed for writing
a compiler. Problems that are expressed easily in one language may
become much more difficult to express in another.

• But, don't use too many different tools. Most projects benefit from a
standardized toolset. Pick a language and libraries that are most useful
for the project at hand, and don't introduce new ones unless there's a
compelling reason to do so.

• Use string and memory management tools. Many languages, including
Java, Python, OCaml, Perl and Ruby, provide transparent memory
management. You do not need to allocate and deallocate memory. You
also do not need to concern yourself explicitly with end-of-string markers
and string size limitations. Both of these are common problems with C
programs that lead to runtime bugs or security holes. If you must use C,
consider a garbage collection or memory pool library.

• Make it work first, then optimize. In many cases, it's better to develop
working code first, then optimize it later. Many people optimize first,
which does work in some cases. However, simple, bug-free code is usually
more important than code that is as fast as it can possibly be.

• Write clean code. Split out code into functions. Write comments.
Document what each function does and its effect on the environment.

 Case Study: a Bug in OfflineIMAP

OfflineIMAP is a program that talks to IMAP servers and synchronizes an IMAP
folder tree with a local tree. Many IMAP servers exist, and they don't all work
exactly the same. Through its two-year history, OfflineIMAP has gained more
and more of the debugging techniques discussed in this article. Problems that
users encounter often are unreproducible with my particular setup, so detailed
logging is a must. Some IMAP servers are buggy themselves, so the first
question that has to be resolved with many reports is: is this even a bug in
OfflineIMAP? In a surprising number of cases, the answer is no. OfflineIMAP
uses certain IMAP features that most other IMAP clients do not, and those
features tend to be poorly tested in some servers.

I'd like to walk you through one particularly stubborn OfflineIMAP bug I've been
working on. About a year ago, someone reported a bug in OfflineIMAP using
the Debian bug-tracking system. Unfortunately, I couldn't duplicate the
problem, and the original submitter didn't have logging turned on when the
problem happened. He also wasn't able to obtain debugging information. Given
the information he did have, which included an error message, I was able to
gather some information following the steps outlined earlier in this article. I
didn't have information on the input and output, but the program flow and
stack both looked normal. In the end, I was able to determine where the
program crashed but not why, so the bug sat there for a while. Things were
made more difficult because the bug was intermittent—sometimes the
program would work fine, and occasionally it would crash.

Later, a second person experienced the same problem. He noticed the existing
bug report on Debian and sent in his information. OfflineIMAP automatically
tries to print out parts of a debug log if a fatal error occurs, and he was able to
capture this output. This OfflineIMAP feature has proven valuable in the past,
because it is not always possible to reproduce the situation leading to a
problem.

In this case, the information helped. I was now able to see what OfflineIMAP
was doing immediately prior to the bug occurring. But, it still was not enough
information to discover the exact problem—everything still looked normal.
However, the bug was intermittent, and he couldn't capture any additional
information.

Eventually, a third person experienced the same problem. Again, he had some
information but not quite enough to figure it out. Something else needed to
happen, so I made the logging in the particular section of code more detailed.
Hopefully, with the additional logging, the next time the problem is
encountered, I'll have enough information to track it down.

Several things played an important role in this process. First, OfflineIMAP
always generates a usable stack trace when a fatal error occurs. Even the least-
detailed report showed exactly where the program was when it crashed.
Secondly, error logs are helpful, but less so if people can't reproduce a
particular bug easily. Printing out debugging information when a program
crashes or malfunctions can be a useful way to help combat that problem.

Also, the bug-tracking system played an important role in tracking down the
problem. Because Debian bug reports are public, the three submitters involved
were able to identify an outstanding bug report and add their information to it.
This helped everyone to manage the information related to the particular issue
and also provided a place to start for the people who encountered the problem
for the first time.

 Conclusion

There are many ways to help your users report bugs in your program and track
them down, but they should not be employed in a vacuum. Don't forget to
make it easy to report and track bugs, and to write clean code in the first place.
Finally, remember that none of these steps are a magic bullet. Taken together,
they can simplify your bug-tracking process and help find many problems, but
they won't necessarily solve everything.

Resources for this article: /article/7747.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7747.html

John Goerzen is a longtime Linux programmer and the author of Foundations
of Python Network Programming. He also serves as President of Software in
the Public Interest, Inc. John welcomes your comments at
jgoerzen@complete.org.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:jgoerzen@complete.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Using Webmin—By the Book

Frank Conley

Issue #129, January 2005

Webmin certainly is a convenient tool and a time saver, but it is not a substitute
for understanding the inner workings of the OS.

Managing Linux Systems with Webmin: System Administration and Module

Development by Jamie Cameron

Prentice Hall PTR, 2003

ISBN: 0131408828

$44.99 US

When it comes to Linux and UNIX, I'm not into convenience. Doing it all by hand
or with a script, if the task is repetitive, always has been a better choice.
Traditionally, I've been leery of GUIs that automate tasks. If you ever have

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

experienced System Administration Manager (SAM) under HP-UX, you know
what I mean. In general it works okay, but it has bitten back enough times to
make me consider alternatives that offer a greater degree of reliability and
consistency. My experience with open source and Linux has been mostly
positive so far, and this fact has made me more receptive to trying things I
otherwise might not have bothered with, such as Webmin.

Before installing Webmin, I read a couple of chapters in Managing Linux
Systems with Webmin to get a feel for it, and then proceeded to check out the
webmin.com Web site. The Web site is not merely the obvious place to start; it
also is well documented and provided me everything I needed to know in
getting started. I followed all the steps from installation to initial login. It
seemed too easy.

Once I logged in I was presented with a number of icons that represent the
management subsystems (Figure 1).

Figure 1. The System module contains a rich sysadmin task environment.

Eighty-plus modules are present in Webmin, and they vary in complexity. As
with anything, it is a good idea to start with baby steps and then move on, but
the first thing one should do upon entering the new environment is to secure it.

I was able to log in as root after the initial installation of Webmin, and this
generates a certain amount of paranoia on my part. If you have put Webmin on
a server, you should secure it, and this is where the book may come in handy.
Chapter 3 walks the reader through a few steps to secure the box, but one is
better advised to become familiar with Webmin configuration and access,
topics covered in Chapters 51 and 52.

http://webmin.com
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f1.large.jpg

I've opted not to secure my machine as best I can, but that doesn't mean I don't
want to know who was logged on when and why. By default, root's actions are
logged, so if you have several folks using root, you can look at what they did. In
Figure 2, one can see from the IP addresses that the root user was logged in
from different clients.

Figure 2. The logs clearly show what root has been doing and from where.

 Exploring the Modules

Modules is a topic larger than what I can cover in the scope of this article, but I
mention a few of the modules so we can sample the span of Webmin. The first
of these modules after the Webmin (configuration) one is the System module.
The first of the subsystems to look at is Bootup and Shutdown. The page
should display Actions, Start At Boot and Description columns. This enables you
to quickly disable services. For example, I typically disable sendmail by starting
on this test box, unless I have a specific need for messaging. You should notice
a red No in the Start At Boot column (Figure 3).

https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f3.large.jpg

Figure 3. The list of services to start is long and varied.

Farther on down is vncserver, which is enabled to run at boot time. If I were to
change this, I would check the box at left and then click on vncserver.

With that, a new page would load that displays, in editable form, the vncserver
startup script (Figure 4). This page allows for stopping, starting, restarting,
setting boot time start and editing the file. Once you save or delete the action,
you return to the Bootup and Shutdown page.

Figure 4. Editing and testing services from within Webmin is straightforward and easy.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7425f4.large.jpg

Jumping to another module, Hardware, and then to the Grub Boot Loader
subsystem, I easily am able to set the boot kernel of choice and the delay I
want. This is an easy task, one that could have been done equally as easily from
the command line, but the GUI conveys more information in an intuitive
manner than does text. If the GUI is reliable, it is desirable as a tool.

 From Simple to Complex

Many of the subsystems are fairly intuitive, and it will be easy for the user to
grasp and use them immediately, but some are complicated. The book comes
in handy in navigating modules such as Apache, but it assumes that you already
understand the applications.

A fair question to ask is whether the benefits of Webmin are worth the learning
curve to use it. This would depend on the support environment in which you
are working. Webmin certainly is a convenient tool and a time-saver, but it is
not a substitute for understanding the inner workings of the OS. Will I continue
to use it and learn more about it? Yes.

The book initially reminded me of a college textbook when I first picked it up. At
700+ pages there is a lot of information here and it is geared toward a serious
user. It exhaustively covers the modules and walks you through what you need
to know. I would recommend it to anyone who plans to use Webmin as a
management tool.

Frank Conley is a UNIX/Linux Support Engineer and former system
administrator. He has been toying with Linux since 1995, and long ago had the
good sense to not see Linux as a toy, but as a very useful tool that he enjoys
working with.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Counting with uniq

Brian Tanaka

Issue #129, January 2005

Shell experts make the best of simple combinations of standard utilities. Learn
one of the most common examples of using two common commands together.

One of the truly great qualities of UNIX-like operating systems is their ability to
combine multiple commands. By combining commands, you can perform a
wide array of tasks, limited only by your cleverness and imagination.

Although the number of potential command combinations is huge, my
experience has shown that certain combinations come in handy more often
than others. One I turn to frequently is combining the sort and uniq commands
to count occurrences of arbitrary strings in a file. This is a great trick for new
Linux users and one you never will regret adding to your skill set.

 A Simple Example

Let's look at a simple example first to highlight the fundamental concepts.
Given a file called fruit with the following contents:

apples
oranges
apples

you can discover how many times each word appears, as follows:

% sort fruit | uniq -c
 1 oranges
 2 apples

What's happening here? First, sort fruit sorts the file. The result ordinarily
would go to the standard output (in this case, your terminal), but note the |
(pipe) that follows. That pipe directs the output of sort fruit to the input of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the next command, uniq -c, which prints each line preceded by the number
of times it occurred.

 A More-Advanced Example

It's not obvious from the simple example why this is so powerful. However, it
becomes clearer when the file at hand is, for instance, an Apache Web server
access log with hundreds of thousands of lines. The access log contains a
wealth of valuable information. By using sort and uniq, you can do a surprising
amount of simple data analysis on the fly from the command line. Imagine a
coworker desperately needs to know the ten IP addresses that requested a PHP
script called foo.php most often in January. Moments later, you have the
information she needs. How did you derive this information so fast? Let's look
at the solution step by step.

For the sake of this exercise your server is logging in the following format:

192.168.1.100 - - [31/Jan/2004:23:25:54 -0800] "GET /index.php HTTP/1.1" 200 7741

The log contains data from many months, not only January 2004, so the first
order of business is to use grep to limit our data set:

% grep Jan/2004 access.log

We then look for foo.php in the output:

% grep Jan/2004 access.log | grep foo.php

If we are to count occurrences of IP addresses, we better limit our output to
only that one field, like so:

% grep Jan/2004 access.log | grep foo.php | awk '{ print $1 }'

A discussion of awk is beyond the scope of this article. For now, you need to
understand only that awk '{ print $1 }' prints the first string before any
whitespace on each line. In this case, it's the IP address.

Now, at last, we can apply sort and uniq. Here's the final command pipeline:

% grep Jan/2004 access.log | grep foo.php | \
awk '{ print $1 }' | sort -n | uniq -c | \
sort -rn | head

The backslash (\) indicates the command is continued on the next line. You can
type the command as one long line without the backslashes or use them to
break up a long pipeline into multiple lines on the screen.

You may have noticed that, unlike in our simple example, the first sort is a
numeric sort (sort -n). This is appropriate because we are, after all, dealing
with numbers.

The other difference is the inclusion of | sort -rn | head. The sort -
rn command sorts the output of uniq -c in reverse numeric order. The
head command prints only the first ten lines of output. The first ten lines are
perfect for the task at hand because we want only the top ten:

43 12.175.0.35
16 216.88.158.142
12 66.77.73.85
 9 66.127.251.42
 7 66.196.72.78
 7 66.196.72.28
 7 66.196.72.10
 7 66.147.154.3
 7 192.168.1.1
 6 66.196.72.64

You can change the functionality of this pipeline by making changes to any of
the component commands. For instance, if you wanted to print the bottom ten
instead of the top ten, you need change only head to tail.

 Conclusion

Piping data through sort and uniq is exceedingly handy, and I hope reading
about it whets your appetite for learning more about pipelines. For more
information about any of the commands used in these examples, refer to the
corresponding man pages.

Brian Tanaka has been a UNIX system administrator since 1994 and has
worked for companies such as The Well, SGI, Intuit and RealNetworks. He can
be reached at btanaka@well.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:btanaka@well.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 A Memory-Efficient Doubly Linked List

Prokash Sinha

Issue #129, January 2005

Save precious bytes with a new twist on a standard data type.

In the quest to make small devices cost effective, manufacturers often need to
think about reducing the memory size. One option is to find alternative
implementations of the abstract data types (ADTs) we are used to for our day-
to-day implementations. One such ADT is a doubly linked list structure.

In this article, I present a conventional implementation and an alternative
implementation of the doubly linked list ADT, with insertion, traversal and
deletion operations. I also provide the time and memory measurements of
each to compare the pros and cons. The alternative implementation is based
on pointer distance, so I call it the pointer distance implementation for this
discussion. Each node would carry only one pointer field to traverse the list
back and forth. In a conventional implementation, we need to keep a forward
pointer to the next item on the list and a backward pointer to the previous
item. The overhead is 66% for a conventional node and 50% for the pointer
distance implementation. If we use multidimensional doubly linked lists, such
as a dynamic grid, the savings would be even greater.

A detailed discussion of the conventional implementation of doubly linked lists
is not offered here, because they are discussed in almost every data structure
and algorithm book. The conventional and the distance pointer
implementations are even used in the same fashion to have comparable
memory and time usage statistics.

Node Definition

We define a node of pointer distance implementation like this:

typedef int T;
typedef struct listNode{

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

T elm;
struct listNode * ptrdiff;

};

The ptrdiff pointer field holds the difference between the pointer to the next
node and the pointer to the previous node. Pointer difference is captured by
using exclusive OR. Any instance of such a list has a StartNode and an
EndNode. StartNode points to the head of the list, and EndNode points to the
tail of the list. By definition, the previous node of the StartNode is a NULL node;
the next node of the EndNode also is a NULL node. For a singleton list, both the
previous node and next node are NULL nodes, so the ptrdiff field holds the
NULL pointer. In a two-node list, the previous node to the StartNode is NULL
and the next node is the EndNode. The ptrdiff of the StartNode is the exclusive
OR of EndNode and NULL node: EndNode. And, the ptrdiff of the EndNode is
StartNode.

 Traversal

The insertion and deletion of a specific node depends on traversal. We need
only one simple routine to traverse back and forth. If we provide the StartNode
as an argument and because the previous node is NULL, our direction of
traversal implicitly is defined to be left to right. On the other hand, if we provide
the EndNode as an argument, the implicitly defined direction of traversal is
right to left. The present implementation does not support traversal from the
middle of the list, but it should be an easy enhancement. The NextNode is
defined as follows:

typedef listNode * plistNode;
plistNode NextNode(plistNode pNode,
 plistNode pPrevNode){
 return ((plistNode)
 ((int) pNode->ptrdiff ^ (int)pPrevNode));
}

Given an element, we keep the pointer difference of the element by exclusive
ORing of the next node and previous node. Therefore, if we perform another
exclusive OR with the previous node, we get the pointer to the next node.

Insertion

Given a new node and the element of an existing node, we would like to insert
the new node after the first node in the direction of traversal that has the given
element (Listing 1). Inserting a node in an existing doubly linked list requires
pointer fixing of three nodes: the current node, the next node of the current
node and the new node. When we provide the element of the last node as an

argument, this insertion degenerates into insertion at the end of the list. We
build the list this way to obtain our timing statistics. If the InsertAfter() routine
does not find the given element, it would not insert the new element.

Listing 1. Function to Insert a New Node

void insertAfter(plistNode pNew, T theElm)
{
 plistNode pPrev, pCurrent, pNext;
 pPrev = NULL;
 pCurrent = pStart;

 while (pCurrent) {
 pNext = NextNode(pCurrent, pPrev);
 if (pCurrent->elm == theElm) {
 /* traversal is done */
 if (pNext) {
 /* fix the existing next node */
 pNext->ptrdiff =
 (plistNode) ((int) pNext->ptrdiff
 ^ (int) pCurrent
 ^ (int) pNew);

 /* fix the current node */
 pCurrent->ptrdiff =
 (plistNode) ((int) pNew ^ (int) pNext
 ^ (int) pCurrent->ptrdiff);

 /* fix the new node */
 pNew->ptrdiff =
 (plistNode) ((int) pCurrent
 ^ (int) pNext);
 break;
 }
 pPrev = pCurrent;
 pCurrent = pNext;
 }
}

First, we traverse the list up to the node containing the given element by using
the NextNode() routine. If we find it, we then place the node after this found
node. Because the next node has pointer difference, we dissolve it by exclusive
ORing with the found node. Next, we do exclusive ORing with the new node, as
the new node would be its previous node. Fixing the current node by following
the same logic, we first dissolve the pointer difference by exclusive ORing with
the next current node. We then do another exclusive ORing with the new node,
which provides us with the correct pointer difference. Finally, since the new
node would sit between the found current node and the next node, we get the
pointer difference of it by exclusively ORing them.

Deletion

The current delete implementation erases the whole list. For this article, our
objective is to show the dynamic memory usage and execution times for the
implemented primitives. It should not be difficult to come up with a canonical
set of primitive operations for all the known operations of a doubly linked list.

Because our traversal depends on having pointers to two nodes, we cannot
delete the current node as soon as we find the next node. Instead, we always
delete the previous node once the next node is found. Moreover, if the current
node is the end, when we free the current node, we are done. A node is
considered to be an end node if the NextNode() function applied to it returns a
null node.

Use of Memory and Time

A sample program to test the implementation discussed here is available as
Listing 2 from the Linux Journal FTP site (ftp.linuxjournal.com/pub/lj/listings/
issue129/6828.tgz). On my Pentium II (349MHz, 32MB of RAM and 512KB of
level 2 cache), when I run the pointer distance implementation, it takes 15
seconds to create 20,000 nodes. This is the time needed for the insertion of
20,000 nodes. Traversal and deletion of the whole list does not take even a
second, hence the profiling at that granularity is not helpful. For system-level
implementation, one might want to measure timings in terms of milliseconds.

When we run the same pointer distance implementation on 10,000 nodes,
insertion takes only three seconds. Traversal through the list and deletion of
the entire list both take less than a second. For 20,000 nodes the memory being
used for the whole list is 160,000 bytes, and for 10,000 nodes it is 80,000 bytes.
On 30,000 nodes it takes 37 seconds to run the insertion. Again it takes less
than a second to finish either the traversal or the deletion of the whole list. It is
somewhat predictable that we would see this kind of timing, as the dynamic
memory (heap) used here is being used more and more as the number of
nodes increases. Hence, finding a memory slot from the dynamic memory
takes longer and longer in a nonlinear, rather hyperlinear fashion.

For the conventional implementation, the insertion of 10,000 nodes takes the
same three seconds. Traversal takes less than a second for both forward and
backward traversal. Total memory taken for 10,000 nodes is 120,000 bytes. For
20,000 nodes, the insertion takes 13 seconds. The traversal and deletion
individually takes less than a second. Total memory taken for 20,000 nodes is
240,000 bytes. On 30,000 nodes it takes 33 seconds to run the insertion and
less than a second to run the traversal and the deletion. Total memory taken by
30,000 nodes is 360,000 bytes.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/129/6828.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/129/6828.tgz

Conclusion

A memory-efficient implementation of a doubly linked list is possible to have
without compromising much timing efficiency. A clever design would give us a
canonical set of primitive operations for both implementations, but the time
consumptions would not be significantly different for those comparable
primitives.

Prokash Sinha has been working in systems programming for 18 years. He has
worked on the filesystem, networking and memory management areas of UNIX,
OS/2, NT, Windows CE and DOS. His main interests are in the kernel and
embedded systems. He can be reached at prokash@garlic.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:prokash@garlic.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

At the Forge: Bloglines Web Services

Reuven M. Lerner

Issue #129, January 2005

More and more Web sites are offering machine-friendly versions of their
services. Here's an example of a simple but useful service—updates on new
Web site content.

Last month, we looked at ways in which we can gather, or aggregate, content
from a number of different Web sites and put together a single summary of the
day's news. Although it was amazing to see how much we could accomplish
with a little bit of code, the application I presented is merely a toy when
compared with actual aggregators. My example application supports only one
user, is controlled by a primitive configuration file, doesn't categorize Weblogs
into groups, checks for Weblog updates only when we explicitly ask it to do so
and doesn't check for or handle errors.

Creating a robust, user-friendly aggregator is beyond the scope of this column,
given the attention to technical and design details that would be necessary. But
several days before I sat down to write this column, something amazing
happened. The free, Web-based Bloglines.com aggregation service, which many
people use to keep track of their favorite Weblogs, announced the availability of
a Web service API that allows independent developers to create and deploy
applications that use the data and applications developed by Bloglines. The
publication and availability of the Bloglines API marks the growing popularity of
Web services among well-known sites and opens the door to new applications
built on the underlying Bloglines infrastructure.

This month, we take a look at the Bloglines API, including the creation of a
simple application based on it. The API is brand new as of this writing (early
October 2004) and undoubtedly will evolve as more people use it. If Weblogs
interest you, and if you still are waiting to see practical uses for Web services,
this combination of events might have come just in time.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 What Is a Web Service, Anyway?

The basic idea behind Web services is quite simple: the Web's success is due in
no small part to the fact that the client and server operating systems are
irrelevant. So long as the client and server adhere to the HTTP and HTML
specifications, they can communicate seamlessly. Linux has made inroads into
the server space precisely for this reason.

Web services take this one step further, saying that computers and not people
should be the biggest users of the Web. Although computers exchange
information over HTTP, they send and receive data in XML, the markup
language or meta-language, that has caught on like wildfire in recent years. If
my computer can send XML in the HTTP request it sends to your computer, and
your computer then returns XML in its HTTP response, we can exchange
information regardless of what languages and operating systems we're using.

The original form of this service, known as XML-RPC, still exists and is great for
fast, easy communication. But this idea was extended further, and a variety of
data types, error-checking mechanisms and object serialization techniques
were introduced that XML-RPC lacked. This extension became known as SOAP
(Simple Object Access Protocol). SOAP theoretically can run on top of a variety
of protocols, but it most often is sent on top of HTTP.

SOAP is a great solution to many problems, except that it is terribly complex,
can be slow and is difficult to implement. And, both XML-RPC and SOAP require
that the HTTP request include a well-formed XML request containing the query.
One response to this growing complexity is REST (representational state
transfer), in which all transactions are initiated by a simple HTTP GET request
and all parameters are specified in the URL itself. The response then is an XML
document containing the records and fields appropriate to the request. All of
the Bloglines API calls are done with REST, although it's hard to say if this
reflects the relatively simple queries now provided or if it's a design preference
of the developers.

Although Web services probably are taking off behind corporate doors, only a
few of the larger Web sites have made their plans and APIs public. The best-
known examples are some of the largest and most profitable sites on the Web,
including Amazon, eBay and Google. eBay charges for access to its Web
services, with annual fees as well as per-transaction costs. By contrast, Amazon
and Google have made their APIs freely available to the public, subject to usage
restrictions and without making any promises regarding future availability.

In making its API public, Bloglines is indicating its interest in creating the same
sort of developer community that Amazon, Google and eBay have created. This
move also demonstrates its interest in remaining a leader in the world of

Weblog aggregation and applications. Given Google's purchase of Blogger
several years ago and the extensive search features that Bloglines is making
available with its API, we might be witnessing the beginning of a new type of
application or platform battle, with the Google and Bloglines APIs competing
for attention.

 Presenting the Bloglines API

Bloglines aggregates content from a large number of Weblogs and frequently
updated news sources. Bloglines is happy to accept feeds in a variety of
formats, including Atom and several versions of RSS. Indeed, Bloglines offers
subscribers the choice of which feed to use, if more than one is available. The
Bloglines software then archives that content, providing a search interface for
interested users. Bloglines provides some relevance features, telling
subscribers which additional Weblogs might interest them. Finally, Bloglines
lets you look at other users' subscriptions; if you are interested in seeing which
Weblogs interest me, you can review my profile and see my subscriptions.

For now at least, much of this functionality remains under wraps, available only
through the Bloglines Web site. But three particular pieces of functionality now
are available from the Bloglines Web services API:

• Notifier: if you are a Bloglines subscriber and want to know when new
content has arrived from one or more of the Weblogs to which you
subscribe, now you can do it. This is the most established of the Bloglines
Web services, and a number of tools for a number of operating systems
and windowing toolkits rely on this interface to provide updates.

• Sync API: allows you to retrieve information about a particular user's
subscriptions, as well as the latest entries from each of those
subscriptions. You can think of this as the data underlying the HTML that
Bloglines generates for the main Weblog listing it provides.

• Blogroll API: presents a way to retrieve and display a particular user's
subscription list.

 Notifier API

As I wrote above, Bloglines has decided to use REST for all of its Web services
APIs. This means every request consists of a single URL, with all of the
parameters and their values in the URL. Information is returned in whatever
format the server deems appropriate. This stands in sharp contrast to SOAP,
which specifies the name and type of each parameter and return value. A
minor exception to this rule is that APIs requiring authentication expect the
user name and password to arrive in HTTP Basic rather than in the URL itself. In
the Bloglines universe, subscribers are identified by their e-mail addresses and
user-selected passwords.

The easiest of the APIs to understand and use is the Notifier. To invoke the
Notifier, simply go to the URL rpc.bloglines.com/update?
user=reuven@lerner.co.il&ver=1. The response, while (incorrectly) tagged by
the server as having a MIME type of text/html, contains a plain-text response of
the format:

|A|B|

Notifiers can interpret the response as follows:

• Normally, A indicates the number of unread Weblog entries in the user's
subscription.

• If the provided e-mail address is not registered with the system, then A
contains -1.

• If B isn't empty, it then contains a URL pointing to an upgrade page. The
documentation doesn't say much about what it means to have an
upgrade page. I assume that such a page is meant for people rather than
programs, because it would be impossible or at least quite difficult to
identify all of the programs that use the Notifier API and that are in need
of an upgrade.

We easily could implement the client side of the Notifier API in any modern
high-level language. But at the time of this writing, versions of Bloglines client
libraries exist in Perl, Python and Ruby. I use the Perl version (on CPAN as
WebService::Bloglines), but you may feel more comfortable rolling your own
version, using a different version or both.

Here is a simple command-line program that prints “You have new blogs!” if
Bloglines reports that new messages are waiting and “No new blogs” if I already
have read everything:

#!/usr/bin/perl

use WebService::Bloglines;

my $username = 'reuven@lerner.co.il';
my $password = 'MYPASS';

my $bloglines = WebService::Bloglines->new(
 username => $username,
 password => $password);

my $unread_blogs = $bloglines->notify();

if ($unread_blogs)
{
print "You have '$unread_blogs' new blogs!\n ";
}
else
{
print "No new blogs.\n"
}

The number returned by $bloglines->notify() is the number of unread
postings, not of unread Weblogs. If there are 15 unread messages from five
Weblogs, $bloglines->notify() returns 15, not 5. Moreover, the number
reflects the state of the internal Bloglines database. That is, if you click on the
Keep New check box at the bottom of a Weblog entry, it is included in the count
of new messages returned by $bloglines->notify().

If we enter an incorrect user name, our program exits with a fatal error and
indicates that we gave it a bad user name. Giving a bad password has no
consequences for the Notifier API, because that information is available
publicly.

 Blogroll API

Another offering from Bloglines, as we mentioned earlier, is the Blogroll API. A
blogroll is a list of Weblogs that a particular author finds interesting and often
reads. It's likely that if you enjoy reading someone's Weblog, you also would
enjoy perusing that person's reading list. In the case of Bloglines, a blogroll
simply is a list of subscriptions associated with a particular user.

So far, we have mentioned that someone's Bloglines user name is the same as
his or her e-mail address. But this is not completely true—if you choose to use
Bloglines for your own private purposes, never sharing information about your
subscriptions with other people, you need nothing more than your e-mail
address. But if you do want to expose your subscriptions, you must choose a
user name with which they can be associated. In my case, my registration e-
mail address is reuven@lerner.co.il and my user name is reuven. This
distinction wasn't clear to me for the first few months that I used Bloglines,
although it seems to be more obviously advertised now.

If a user has established a user name for public consumption and if that user
has chosen to share his or her subscriptions, you can get a version of that
user's Blogroll that uses HTML and JavaScript as follows: http://
www.bloglines.com/public/reuven. If we want to retrieve the blogroll results in
HTML, we can do so with the following style of URL: http://rpc.bloglines.com/
blogroll?id=reuven&html=1.

But the whole idea of Web services is to make data machine-readable, such
that it can be stored and processed by computers. OPML, the Outline Processor
Markup Language, specified by Dave Winer in 2000, is the format used by
Bloglines when it exports a list of subscriptions. It is not an official part of the
Bloglines Web services specification, but you can retrieve it by going to the
following type of URL: http://www.bloglines.com/export?id=reuven.

In all of the above examples, you can and should replace my Bloglines user
name with that of the user whose blogroll you want to read. Not every user
makes his or her subscription list public, so you may encounter error messages
when trying to retrieve them. And once you retrieve the OPML, you need to
process it, perhaps using a tool such as the publicly available XML::OPML
module from CPAN.

 Conclusion

As you can see, the Bloglines API for Web services opens the door to a host of
third-party applications. It increasingly is possible to create useful applications
that use HTML, XML and HTTP but that are not tied to a Web browser. The
Notifier and Blogroll APIs are only the beginning. As we saw earlier, there is also
a Sync API that effectively allows developers to create alternative GUIs and
applications with the actual content Bloglines retrieves and stores. In my next
column, we will look at the Sync API, building some basic applications on top of
the Bloglines infrastructure.

Reuven M. Lerner, a longtime Web/database consultant and developer, now is
a graduate student in the Learning Sciences program at Northwestern
University. His Weblog is at altneuland.lerner.co.il, and you can reach him at
reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://altneuland.lerner.co.il
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Korner: The Linux Test Project

Nigel Hinds

Issue #129, January 2005

Finding 500 bugs in 50 different kernel versions is the fruit of this thorough
Linux testing and code coverage project.

The Linux Test Project (LTP) was developed to improve the Linux kernel by
bringing automated testing to kernel design. Prior to the LTP, no formal testing
environment was available to Linux developers. Although most developers unit-
tested the effects of their own enhancements and patches, systematic
integration testing did not exist. The LTP's primary goal is to provide a test suite
to the Open Source community that helps to validate the reliability, robustness
and stability of the Linux kernel. The suite tests kernel function and regression,
with and without stress. The LTP is not a performance benchmark, but
benchmarks often are used to drive the kernel during testing.

The LTP began as 100 test programs developed by SGI. Now, through the joint
efforts of SGI, IBM, OSDL, Bull, Wipro Technologies and individual Linux
developers, the LTP contains over 2,500 test programs, also called test cases,
and a number of automation tools. The LTP supports multiple architectures,
including x86, IA32/64, PPC32/64, and 32- and 64-bit s/390.

Although other test suites and projects exist, the LTP includes an environment
for defining new tests, integrating existing benchmarks and analyzing test
results. The Software Testing Automation Framework (STAF/STAX) is an open-
source system that allows you to plan, distribute, execute and collect test
results from a large pool of multiplatform test hosts. STAF/STAX also provides a
powerful GUI-monitoring application that allows you to interact with and
monitor the progress of your jobs. Test-coverage visualization tools let you see
how much of a test's source code is executed by the kernel.

The IBM Linux Technology Center (LTC) has played a key role in using the LTP to
uncover defects in the Linux kernel. Using the LTP, the LTC has tested more
than 50 new kernel versions and found more than 500 defects. As covered in

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linda Scott's whitepaper (see the on-line Resources), a typical kernel test cycle
uses the LTP for focus testing to isolate and validate Linux component and
application stability. This includes regression testing on new kernels to ensure
they meet the functionality of previous kernels. Integration testing then
validates component interaction, driven by macro-benchmark workloads.
Finally, reliability and stress testing validate systemic robustness with extended
duration tests (96 hours to 30 days).

The remainder of this article describes how to download and run the LTP test
suite using the automation tools. We also discuss some LTP tools that can be
used to help improve kernel development and testing.

 The Test Suite

The tests cover a wide range of kernel functions, including system calls,
networking and filesystem functionality. The basic building block of the test
suite is a test program that performs a sequence of actions and verifies the
outcome. The test results usually are restricted to PASS or FAIL. Together, all
the test programs and tools make up the LTP package.

The LTP is a GPL package and is available from SourceForge.net. A stable
version of the LTP test suite source, ltp-yyyymmdd.tgz is released monthly. As
of this writing, the latest version is ltp-20040405. After downloading the
package, extract and install as follows:

tar zxf ltp-20040405.tgz
cd ltp-20040405
make
make install

You need root access to perform that last step and also to run the test suite.
The test suite also is available in binary and source RPM format. For those of
you who like living on the edge, development snapshots can be downloaded
through anonymous CVS (see Resources).

 Executing the Test Suite

Once installed, a number of options are available for running the LTP test suite.
The most popular method is to use the runalltests.sh script, which executes
about 800 of the original tests. The tests not included in runall are destructive,
require monitoring or for some other reason cannot be automated. The runall
script has a default behavior to run a single iteration of the test suite and
produce verbose screen output. This output can be omitted with the quiet
option (-q). As a simple introduction, we ignore the screen information for now
and use the -l logfile_name and -p options to generate human-readable log
results.

The test cases are executed by the test driver called Pan. Pan, included in the
LTP package, is a lightweight driver used to run and clean up test programs.
The runalltests script calls Pan to execute a set of test cases or a single test
case. You can execute a set of test cases by providing runalltests with a -f
scenario file. A scenario file is a simple ASCII text file that contains two columns.
The first column has the name of a test case, and the second column has the
command to be run. Comments start with a pound sign. For example:

Testcase to test mmap function of the kernel
testcase1 mmap3 -l 100 -n 50

Testcase to stress the kernel scheduler
testcase2 sched_stress.sh

The test driver uses the exit value of the test case to decide success or failure of
a test. If the test case exits with a non-zero value, Pan records this as FAIL. If the
test case exits with a value zero, the driver records it as PASS.

The simplest use of the test suite is to run it on your system to ensure that
there are no failures:

runalltests.sh -l log -p -o output

For known failures, the LTP package includes an explanation and pointers to
places for more information. Below is the partial log file from running
ltp-20040506 on a 2.6.3 kernel:

Test Start Time: Mon May 17 14:20:45 2004

Testcase Result Exit Value
-------- ------ ----------
abort01 PASS 0
accept01 PASS 0
access01 PASS 0
...
rwtest01 PASS 0
rwtest02 PASS 0
rwtest03 FAIL 2
rwtest04 FAIL 2
rwtest05 PASS 0
iogen01 PASS 0
...

Total Tests: 797
Total Failures: 6
Kernel Version: 2.6.3-gcov
Machine Architecture: i686
Hostname: ltp2

In this partial log, 797 tests were run and six failed. rwtest03 and rwtest04 are I/
O tests that failed due to mmap running out of resources. This problem has

been resolved. The remaining failures, not shown in the log, are described
below:

• setegid01: verify that setegid does not modify the saved gid or real gid—
failed because of a bug in glibc 2.3.2.

• dio18,dio22: I/O testing—failed because of data comparison mismatch.
• nanosleep02: verify that nanosleep will suspend and return remaining

sleep time after receiving signal—failed due to lack of microsecond clock
precision.

Writing test programs is fairly straightforward. The test cases are written in
ANSI C and BASH and use the LTP Application Program Interfaces (APIs)
provided by the LTP library libltp to report test status. Templates are provided
that show you how to develop test cases using libltp. The test cases can use the
interface to print results messages, break out of testing sequence and report a
test status such as PASS or FAIL. Manual pages for using these APIs are
provided in the test suite package and also on the LTP Web site. For more on
the esoteric uses of LTP and a tutorial on developing tests that can be included
in the LTP, see the Iyer and Larson papers in Resources.

 Automation Tools

Although not required to run the test suite, the LTP has a number of related
tools and projects that facilitate test automation. Two of these projects are the
Software Testing Automation Framework (STAF/STAX) and the Open Source
Development Lab (OSDL) Test Platform.

LTC uses STAF/STAX to manage a pool of test machines. Using the STAF/STAX
Web interface you can find and configure test machines, then run and monitor
any set of test programs and return the results. STAF is an open-source,
multiplatform, multilanguage testing framework. It is based on the concept of
reusable services, such as process control, logging and event handling that
automate testing activities. At its core, STAF is a message routing dæmon that
maintains a network of local and remote services and routes requests to those
services. A network of STAF-enabled machines is built by running STAF clients
on dedicated networked hosts. STAX is a GUI-based execution engine built on
STAF, XML and Python. It provides an interface for testers to distribute, execute
and process test results.

The OSDL Scalable Test Platform provides a framework for developers to
execute tests against specific kernels and kernel patches through a Web-based
interface. LTP is one of the tests that OSDL executes. Using the Web interface,
you also can search for historic test results. The LTP Web site has detailed
information regarding this framework.

 Expanding the Test Suite with Coverage Analysis

The often unspoken assumption with software testing is that the test cases
cover a majority of the software source code written. A test covers a line of
code if running the test executes the line. Coverage analysis measures how
much of the target code is run during a test and is a useful mechanism for
evaluating the effectiveness of the LTP test suite. Given two test cases that run
successfully, the test with the higher code coverage provides somewhat more
assurance that the code is bug-free. Of course, bugs still may exist in the
untested code, and even 100% coverage does not guarantee bug-free code.

Cornett's paper provides a good introduction to the many types of coverage.
We've based the LTP coverage on the GCC compiler that provides statement
and branch coverage. As stated earlier, statement coverage reports which lines
of the source code are executed. Branch-conditional coverage reports which
Boolean conditions in a control statement, such as “if” or “while”, are tested and
taken. In the code below, branch-conditional coverage would tell us when the
branch was taken, statement1 executed, and when it was due to condition1 or
condition2 being true:

if (condition1 || condition2)
 statement1;
else
 statement2;

GCC coverage works by passing the options -fprofile-arcs -ftest-coverage to the
compiler and the GCOV program that processes coverage data. GCOV produces
a source file annotated with the number of times each line of code and branch
condition was executed. GCC coverage was intended originally for user-space
programs and needed to be adapted for the kernel because coverage data is
produced only when a program terminates, which the kernel never does.

Also, because the kernel is not linked with standard C libraries, many of the
GCOV structures are not present in the kernel. The LTP has published a GCOV-
kernel patch to the Linux kernel that addresses these issues and allows
developers to use the existing GCOV tools to gather coverage data from a
running kernel. Installation instructions as well as a detailed description of the
functionality provided by the patch can be found at the LTP Web site and in an
Ottawa Linux Symposium paper by Paul Larson and others.

The GCOV-kernel patch is published on the LTP Web site as a separate package,
but it is included in the LTP development tree. In addition to kernel code
changes, when installed, the patch configures the Makefiles to pass the
coverage options to GCC when the kernel is compiled. The coverage options
instruct the compiler to generate code and data structures to capture
information that is used to determine which lines of kernel code were

executed. The user-space tool GCOV combines the source files and the files
generated by running a GCOV-enabled program—in our case this is the kernel
—to produce a new source code file with the count for each line of C code,
representing the number of times the line was executed. Because the program
output needed for GCOV is not created until the program ends, and the kernel
does not terminate, the patch also creates a /proc/gcov/... tree that GCOV can
use at any time to get counter data from the kernel.

To facilitate coverage analysis further, the LTP has developed a utility, LCOV, to
create more useful graphic GCOV output. LCOV can be downloaded from the
GCOV-kernel Web site. LCOV automates the process of extracting the coverage
data from the kernel, running GCOV and producing HTML. Once the GCOV-
kernel patch is applied and compiled, the coverage system can be used as
follows.

First, load the gcov-proc kernel module:

insmod gcov-proc.o

Clear the GCOV counters:

lcov --reset

Run the LTP test suite or your favorite test program next, then capture GCOV
data:

lcov -c -o coverage.info

Create the HTML coverage tree:

genhtml coverage.info

genhtml is one of the LCOV tools and generates HTML output at both the
directory and file level, as illustrated in Figures 1 and 2. Figure 1 is a partial
screenshot of the Linux kernel source subdirectory. In this example, the total
amount of code covered for the directory is 47.3%. Each line shows a filename.
A color-coded meter is used to represent the amount of coverage for the file:
green for files with 50% coverage or greater, yellow for files with coverage
between 10% and 50% and red for files with less than 10% coverage. The last
two columns show the percent coverage for the file and number of lines
executed over the total number of lines instrumented. Both figures are
displayed on a color-coded background. Figure 2 is a partial view of a printk.c
file. This is a graphical view of the original GCOV output. A similar color coding
is used to allow you to identify under-utilized code quickly. At this time, LCOV
output shows only statement coverage and not branch coverage.

Figure 1. genhtml produces a code coverage report from GCOV data.

Figure 2. Color codes show under-utilized code in the source file.

 Conclusion

As Linux plays an increasing role in the enterprise computing space, robustness
and reliability requirements have led to more formal testing methods. The LTP
is a functional regression testing suite used to help improve Linux reliability.
For any kernel development project, running the LTP test suite gives you a
method to help ensure your changes don't break the kernel. As you test your
kernel modifications, a GCOV-enabled kernel and accompanying LTP tools will
help you visualize the effectiveness of your testing and help focus the test team
on areas with low coverage.

In addition to test results that show kernel regressions and code coverage gaps,
the LTP and coverage analysis potentially provide a method for measuring
kernel improvement over time. Consider the simple argument: combined with
higher coverage of the kernel code, fewer kernel failures suggest that Linux
kernel reliability is improving. A study of how well LTP tracks improvement in
Linux is part of our future work.

Finally, we would like to encourage developers to submit their tests to be
included in the LTP suite. As always, suggestions and comments are welcome,
and should be sent to the mailing lists found on the LTP Web site.

Resources for this article: /article/7809.

Nigel Hinds is a member of the technical staff at IBM T. J. Watson Research
Center. He develops testing tools and maintains the kernel coverage system for
the Linux Testing Project. His other interests include networking and
distributed systems. He can be reached at nhinds@us.ibm.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7809.html
mailto:nhinds@us.ibm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Cooking with Linux: Forgotten Security

Marcel Gagné

Issue #129, January 2005

You aren't supposed to use the same password on multiple accounts, but with
all the servers and Web sites that require a password, what's a security-
conscious chef to do? Here's how to make password wrangling both convenient
and secure.

Where is that wine order from Henri's Fine Wines, François? We seem to be
getting low on a couple of my favorites. Henri is usually right on top of these
things. Did he not give you an order to approve? Ah, excellent. Then you have
the order? No? What do you mean, it is somewhere safe? You either have it or
you don't? I see. You thought it was important, so you encrypted the order and
threw away the original message. Let me guess, mon ami, you do not
remember the password you used to encrypt the message. That's what I
thought. All right, show me what program you used.

Steganography, François? You used a picture of yourself and embedded the
wine order inside it—I'm impressed! We will deal with this problem a little later,
François. There isn't much time, and our guests will be here any moment. Ah,
but they are already here.

Welcome, mes amis to Chez Marcel, the world's finest Linux French restaurant
and the home the greatest wine cellar in the world. Of course, at this moment,
it might be only the second best in the world. It seems my faithful waiter
misplaced an order and didn't want to tell me. Yes, François, I know you know
where it is. Just go down to the cellar and bring back the 2000 Douro from
Portugal. This is a great red, mes amis, a rich and powerful wine with
wonderful, dark fruit flavors and just a hint of mystery. Vite, François!

While François brings back the wine, let me tell you how he managed not to
misplace the wine order. He used a program called Steghide, created by Stefan
Hetzl, to encode and encrypt the list inside an image, an image of himself as it
turns out (Figure 1).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. Hidden somewhere in this image is a large order for wine.

This process is called steganography. Using this process, you can take any
message and encode it inside another message (or in this case, a graphic
image). In fact, you could create a whole Web site, full of images with secret
messages in all of them, and no one would be the wiser. You can get a copy of
Steghide at the Steghide home page (see the on-line Resources). Contributed
binaries are easy to find. To build from source, Steghide requires the libmhash,
libjpeg, zlib and libmcrypt development libraries; other than that, it's an easy
build that you'll recognize as an extract and build five-step:

tar -xzvf steghide-0.5.1.tar.gz
cd steghide-0.5.1
./configure
make
su -c "make install"

In order to hide the wine replacement order, François used the following
command to encode the document into his picture:

steghide embed -cf francois.jpg -ef wine_order.txt

Speaking of wine, François has returned. If you would be so kind, mon ami, and
pour for our guests. Anyhow, immediately upon running the command, you are
asked for a passphrase:

Enter passphrase:
Re-Enter passphrase:
embedding "wine_order.txt" in "francois.jpg"... done

The result is an image that still looks as it did before you hid your secret
message inside, but its size will have changed. To recover the data from the
image, you or the person to whom you sent the image can use the extract
argument with the command:

steghide extract -sf francois.jpg
Enter passphrase:

If you successfully entered the right information, the hidden file is saved to
disk. This is precisely where things start to go wrong. After forgetting the
passphrase, there is no way to retrieve the information. In real life, some of us
have, on occasion, lost our keys. Some people chronically lose their keys, and
that's why an enterprising inventor came up with the idea of putting a beeper
on a keychain. Assuming you don't lose the locator unit, you can push a button
and your keys emit a high-pitched signal telling you which cushion they've
slipped behind.

With passwords, there's a similar idea. The simplest of these is to write
passwords down or keep them in a text file. That's not a particularly secure
method. However, the idea of keeping a list of passwords or passphrases
makes more and more sense as we are asked to remember dozens, sometimes
hundreds of passwords. It might be a lot easier if all we had to remember was
one password, and that's where password managers come into play.

The first one I ran across was Dennis Pries' Password Management System or
PMS. I like this one because it can run in a text-only terminal window, which
means you can access it through a shell login from wherever you might be. You
can pick the program up from SourceForge (see Resources), where source and
a Debian package are available.

To build PMS, you have to do a kind of double extract and build five-step. First,
extract the tarred and gzipped bundle (tar -xzvf pms-0.94.tar.gz).
Now, look inside that source directory and you'll find a contrib directory from
which you can build cdk using the extract and build five-step on that source
archive. Once cdk is installed, go back to the PMS source directory, then build
and install that.

The command to use this password manager is pms. When you run it for the
first time, it asks you for a master password. This is the only password or
passphrase you need to remember from here, but make sure you do. Forget
the master key and you won't be able to get at all those other passwords. Then,
PMS provides you with a simple menu from which you can add, delete or
rename a host. These would be the hosts that you need to log in to. Start by
adding a host (for example, www.somewhere.dom) and then a comment (for
example, main production system). You'll find yourself back at the main menu.
From there, choose User Functions. That's the menu that lets you add or delete
user names associated with whatever hostnames you added in the previous
step. You also can show a user to display the password you thought was lost
forever.

Before I move on, I should point out that the hostname and user name could
be anything. For hostname, I could enter “school locker”, for user name
“combination” and for password, the combination itself. Although it is intended
for recording login information, it works very well for other things (Figure 2).

Figure 2. PMS isn't only for passwords. Store your locker combination too.

Another thing we tend to forget all the time are the various passwords we enter
for the countless Web sites we visit. From on-line banking to newspapers that
require you to have a free account to read the articles, the number of accounts
we build up over time is staggering. Then, there are the passwords associated
with our instant messaging accounts, e-mail accounts, FTP sites and more. If
there were some way to maintain and store all this information transparently
while we worked, it could simplify things. Is there such a thing that integrates
into the desktop?

The answer is yes. With the release of KDE 3.2 and now 3.3, users of the
desktop find that they have a password manager built in. It's George Staikos'
KDE Wallet Manager, and the program that runs it is kwalletmanager. When
you first start the program, no wallets are created. You will, however, see a
small wallet icon appear in your system tray. If the wallet manager window is
not already open, click on the icon, and a blank box, looking a great deal like an
empty directory folder, appears. Click Settings on the menu bar and select
Configure Wallet.

A new dialog box appears with most items grayed out. Click the check box that
says Enable the KDE Wallet Subsystem. Several other options now are available
to you (Figure 3).

https://secure2.linuxjournal.com/ljarchive/LJ/129/7853f3.large.jpg

Figure 3. Configuring the KDE Wallet Manager to Handle Your Passwords

Look at the middle section, labeled Automatic Wallet Selection. You're asked to
select the wallet to use as the default. Right below that, you have the option of
selecting another wallet for local passwords (more on that in a moment). If this
is the first time you run the KDE Wallet, it's unlikely at this point that you have
an existing wallet; click New and enter a name for this wallet when prompted to
do so. You simply might choose to use your name as I did. Once you enter the
name and click OK, the KDE Wallet Manager Wizard appears offering you the
basic or advanced setup, with basic being the recommended choice. In the
advanced setup, there are a few more information screens and you can choose
at that time to create a separate wallet for local passwords. I chose basic and
went for the single wallet.

Whichever you choose, at some point the wizard asks you for a master
password to open the wallet. This is the super-password, the one you don't
want to forget—the one that opens the door to all the others. Choose carefully,
and make sure the check box labeled “Yes, I wish to use the KDE wallet to store
my personal information” is checked on.

When you've finished the wizard you almost are done. A new dialog box pops
up telling you that an application (the wizard) has asked to create a new wallet.
You now must confirm this request with the password for that wallet. Take note
of this dialog. You'll see something similar to it once per KDE session whenever

https://secure2.linuxjournal.com/ljarchive/LJ/129/7853f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7853f3.large.jpg

an application wants to open the wallet to check a password. Until you log out,
the wallet now stays open. In fact, visit a Web site where you are asked for a
user name and password (such as your bank page). After you have entered the
information and clicked Submit or Enter (depending on the form), a new dialog
appears from the KDE Wallet Manager telling you that an application (in this
case, Konqueror) has requested to open the default wallet (which you just
created). Have a look at Figure 4 to see what I mean.

Figure 4. Your master password must be entered to open the wallet.

Enter your master password and click to continue. You'll get one final warning
telling you that this encrypted information is about to be saved and asking for
your confirmation. Click Yes. Now, look down in your system tray, and you'll see
that the icon shows a slightly open wallet where before it was closed.

The beauty of this particular system is that all the information is entered
magically for you next time you visit a site. This is true of any KDE application
that asks you for a password, such as your instant messenger.

There is one catch, however, and it is a big one. As I mentioned, you'll need to
enter your master password only once per KDE session, and that makes things
easy. But beware: now that you've got your system automatically filling in
passwords for you, securing your desktop becomes important. Make sure you
lock your desktop before you walk away. Another way to do this is to go back
into the KDE Wallet configuration dialog and look at some of the Close Wallet
options. You can set it to close automatically after a defined period of time, like
when the screensaver starts (when you normally would be away) or when the
last application using it is closed. Doing it that way, you have one less thing to
remember.

Judging by the clock on the wall, mes amis, it appears that closing time is once
again upon us. As you can see, there are a number of alternatives for storing
password information so that you do not have to remember dozens or
hundreds of cryptic letter and number combinations. Perhaps if we can
convince François to use a tool like this in the future, there won't be any more
lost orders. In the meantime, I'm sure we can convince him to refill our guests'

glasses one more time. And don't worry about the wine supply. I personally will
make sure the wine cellar is fully stocked when we next meet. Until next time,
mes amis, let us all drink to one another's health. A votre santé Bon appétit!

Resources for this article: /article/7860.

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of Moving to the Linux Business Desktop (ISBN 0-131-42192-1), his third
book from Addison-Wesley. In real life, he is president of Salmar Consulting,
Inc., a systems integration and network consulting firm. He is also a pilot, writes
science fiction and fantasy and folds a mean origami T-Rex.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7860.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin: Taking a Risk-Based Approach to Linux

Security

Mick Bauer

Issue #129, January 2005

Risk is inevitable. Be pessimistic about individual programs failing, make plans
for handling and containing problems, and you'll keep your system as a whole
secure.

Since I started writing this column four years ago, the nature of Linux software
vulnerabilities and threats hasn't changed that much. Buffer overflows, bad
configurations (including file permissions) and inadequate input validation still
form the lion's share of Linux vulnerabilities. If the same kinds of vulnerabilities
keep cropping up, is the whole patch rat race futile? Or, is there a broader
approach to Linux security that we can adopt?

This month, I discuss Linux security from a risk-based perspective and illustrate
how by using the risk-based approach we can mitigate not only the Linux
vulnerabilities we know about, but the ones nobody's discovered or publicized
yet.

 The Risk-Based Approach to Security

You may be wondering, what do I mean by a risk-based approach? Isn't all
information security about risks? Indeed it is, but this term is actually short for
risk management-based approach.

There are only a few ways to handle a given information security risk. We can
avoid it by not doing anything that exposes us to that risk. We can eliminate it
by addressing its root cause (which is, in practice, seldom within our control).
We can mitigate it—that is, do something that lessens the impact of the risk in
some way. Or, we can accept it.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

One school of thought, now thankfully obsolete, holds that security is a binary
equation: things either are secure or stupid, and if one judges a given activity or
tool as not being secure, one simply should not do that thing or use that tool. In
other words, in this school of thought, risk avoidance is the preferred approach
to security.

As most of us acknowledge nowadays, however, absolute security does not
exist. No magic combination of software choices, software/system
configuration or network topology can make us invulnerable to security
breaches. No combination, that is, that you actually can do any work with. Risk
in some quantity or another is inevitable in networked computing.

The risk management-based approach to security acknowledges the need to
seek balance between risk avoidance, risk mitigation and risk acceptance, by
prioritizing risks based on their likelihood and potential impact. Risks that are
both likely to occur and expensive to recover from are tagged as being the
most important risks either to mitigate or avoid. Risks that either are highly
unlikely or extremely cheap to recover from become reasonable candidates for
risk acceptance. By the way, when I talk of the cost or impact of a risk occurring,
I mean not only monetary cost but also lost time, reputation and productivity.

Figure 1 shows the general relationship between a risk's likelihood, its cost and
its acceptability. The precise shape of the curve that defines the acceptable risk
and unacceptable risk zones will vary from organization to organization. A
financial institution, for example, will tend to have a much bigger red zone than
a university network.

Figure 1. Risk Thresholds

Thus, to take a risk-based approach to security is to acknowledge that not all
risks are created equal, and therefore, you must choose your fights. To do so
effectively, however, requires you to be creative and honest in identifying and
assessing the risks in a given undertaking. Denying a risk exists is far more
dangerous than acknowledging and accepting that risk and making recovery
plans should the worst occur.

This brings up another important aspect of the risk-based approach: risk
acceptance should not mean complacency. Any risk that can't be avoided or
mitigated must at least be taken into consideration in business continuation
and recovery plans. Furthermore, very few information security risks can't be
mitigated in some way or another; many types of risks can't be eliminated but
can nonetheless be contained or attenuated.

 Vulnerabilities and Threats

Okay, so Linux security is best handled with a risk-based outlook. What does
that look like? Step one is to think about known and potential vulnerabilities in
your Linux system. Most of Linux's application and system vulnerabilities fall
into one of these categories:

• Buffer-overflow vulnerabilities (inadequate bounds checking).
• Poor input validation.
• Inappropriate file permissions.
• Inappropriate system privileges (avoidable use of root).
• Sloppy configuration.
• Insecure use of temporary files.
• Predictable or known default passwords.
• Administrative back doors (test or debug accounts).

The first vulnerability in this list, buffer overflows, is arguably the scariest.
Buffer overflows frequently lead directly to remote root compromises. Like
buffer-overflow conditions, many of these vulnerabilities are the direct result of
programming errors such as insecure use of temporary files and administrative
back doors. Others are more typically user-inflicted by predictable passwords
or sloppy configuration.

No vulnerability, however, actually constitutes a threat unless someone
attempts to exploit it. In other words, a threat equals a vulnerability plus an
attacker.

Step two is to think about ways that these vulnerabilities might be exploited.
Although Linux vulnerabilities haven't changed much over the years, the actors
who attempt to exploit them have. They've become both more effective and

dumber. The scary truth is, easy availability of exploit code and scripts has
made it increasingly easy for unskilled attackers to conduct increasingly
sophisticated attacks.

For example, traditionally, conducting a buffer-overflow attack has required
considerable programming skill—besides being able to determine where in
memory the overflowed data will end up, the attacker must write or procure
exploit code, or shellcode written in assembler code specific to the target
system's architecture, such as i386 or SPARC. Shellcode is the code that gets
overflowed and executed, resulting in a shell, ideally with root privileges, on the
target system.

In olden times, the difficulty of identifying offsets and writing working shellcode
narrowed the field of potential buffer-overflow attackers considerably.
Nowadays, however, if you want to exploit a well-known buffer-overflow
vulnerability, all you need to do is perform the right type of Google search to
obtain exploit tools, each complete with shellcode for a variety of target
systems.

People who write exploit scripts and publish them on the Internet are a big
enough problem. But they're not the only actors in the threat equation; if
you're the kind of person who enjoys arming script kiddies, it's only a little more
work to automate the exploit completely and package it up into a worm or
virus.

Viruses, of course, can't propagate themselves; they're always embedded
within something else, for example, e-mail attachments or executable files.
Worms, which propagate themselves, are much scarier—they're essentially
viruses with wings. In fact, if you were to watch your log files during a worm
attack, you'd have a hard time distinguishing it from an attack conducted by a
human being. A worm is sort of an attack robot.

Thus, attackers either can be humans or pieces of software. The good news is,
because they exploit exactly the same sorts of vulnerabilities, the defenses are
the same for each. The bad news is, attack scripts, worms and viruses have
shortened exponentially the amount of time you've got between the time a
vulnerability is discovered and publicized and the time your system probably
will be probed for that vulnerability by an attacker.

 Defense Scenario One: Firewall Policies

Now, let's begin matching these threats with defenses. This is where the risk-
based approach becomes really important.

If you take an absolutist view of security, defense is simple. You choose
software based not on the best combination of functionality, supportability and
security, but solely based on security. Because security is your main software
criterion, all you need to do is keep it patched, and all is well.

You probably also configure your firewall to trust nothing from the outside and
to trust everything originating from the inside, because, of course, all outsiders
are suspect and all insiders are trustworthy. In fact, software patches and
firewall rules are so important in this view that practically nothing else matters.

And indeed, software patches and firewalls are important. But the degree to
which we depend on patches and the way we use firewalls is somewhat
different if we take the trouble to think about the real risks they're meant to
address.

Consider the scenario I've sketched out in Figure 2. A firewall protects a DMZ
network from the outside world, and it protects the internal network from both
the outside world and the DMZ.

Figure 2. Simple Firewall Scenario

The firewall rules, shown in Figure 2 by the dotted lines, might look like this:

1. Allow all Internal hosts to reach the Internet via any port/protocol.
2. Allow all DMZ hosts to reach the Internet via any port/protocol.
3. Allow all Internet hosts to reach the DMZ via TCP port 80 (HTTP).
4. Allow the DMZ Web server to reach Internal hosts via TCP ports 1433 and

2000–65514.

On the face of it, this might seem reasonable enough. Internal users need to do
all sorts of things on the Internet, so restricting that access is a hassle. The DMZ
needs to do DNS queries for its logs, so why not give it outbound Internet
access too? And there's a back-end application the DMZed Web server needs to
access on the internal network that involves a database query on TCP 1433 plus
a randomly allocated high port that falls within some finite range nobody's
managed to document. So, the easiest thing to do is open up all TCP ports
higher than 1999.

But let's consider three plausible risks:

1. Internet-based attacker compromises Web server and uses it to attack
other systems on the Internet.

2. Worm infects internal system via an RPC vulnerability, and the infected
system begins scanning large swaths of the Internet for other vulnerable
systems.

3. Worm infects the internal system and starts backdoor listener on TCP
6666. Attacker compromises Web server, scans firewall, detects well-
known worm's listener and connects to the internal system.

In the first risk scenario, we've got an obvious legal exposure. If our Web server
is compromised, and our firewall isn't configured to restrict its access to the
outside world, we may be liable if the Web server is used to attack other
systems. Restricting the Web server's outbound access only to necessary
services and destinations mitigates this risk. In practice, a typical DMZed Web
server should require few if any data flows to the outside world—its job is
responding to HTTP queries from the Internet, not initiating Internet
transactions of its own.

In the second scenario, we have a similar exposure, though the network
performance ramifications are probably greater than the legal ramifications (all
that scanning traffic can clog our Internet uplink). Again, a more restrictive
firewall policy around outbound access trivially mitigates this risk.

The third scenario may seem a little more outlandish than the others—what are
the chances of a worm infection on the inside and a Web server compromise in
the DMZ both happening at once? Actually, they don't have to occur
simultaneously. If the worm sets up its backdoor listener on TCP 6666 but then
goes dormant, it may not be detected for some time. In other words, the Web
server's compromise doesn't need to occur on the same day, or even in the
same month, as the worm infestation if the infected system isn't disinfected in
time. As with the other two scenarios, a more restrictive firewall policy
mitigates this risk and minimizes the chance of the internal worm infestation
being exploited by outsiders.

Besides being mitigated by more restrictive rules, these three risks have
another important commonality. You don't need to predict any of them
accurately to mitigate them. Rather, it's enough to think “what if my inbound
firewall rules fail to prevent some worm or virus from getting in, and
unexpected types of outbound access are attempted?”

I can't stress strongly enough that it's important not to focus exclusively on
attack prevention, which is what inbound firewall rules do. It's equally
important to think about what might happen if your preventative measures fail.
In information security, pessimism is constructive, not defeatist.

I also hope it's clear by now that my point isn't that firewall rules are the answer
to all your Linux risks. The point is that effective firewall rules depend on you
considering not only known threats, but potential threats as well.

 Defense Scenario Two: Application Security

So, if firewalls aren't the panacea, what else must we do? Earlier in this column,
I identified sloppy configurations as a major category of vulnerabilities; the flip
side of this is that careful configurations are a powerful defense.

Suppose I've got an SMTP gateway in my DMZ that handles all e-mail passing
between the Internet and my internal network. Suppose further that my
organization's technical staff has a lot of experience with Sendmail and little
time or inclination to learn to use Postfix, which I, as the resident security
curmudgeon, consider to be much more secure. Management decides the
gateway will run Sendmail. Is all lost?

It doesn't need to be. For starters, as I've stated before in this column,
Sendmail's security record over the past few years actually has been quite
good. But even if that changed overnight, and three new buffer-overflow
vulnerabilities in Sendmail were discovered by the bad guys but not made
known to the general public right away, our Sendmail gateway wouldn't

necessarily be doomed—thanks to constructive pessimism on the part of
Sendmail's developers.

Sendmail has a number of important security features, and two in particular
are helpful in the face of potential buffer overflow vulnerabilities. Sendmail can
be configured to run in a chroot jail, which limits what portions of the
underlying filesystem it can see, and it can be configured to run as an
unprivileged user and group, which minimizes the chances of a Sendmail
vulnerability leading directly to root access. Because Sendmail listens on the
privileged port TCP 25, it must be root part of the time, so in practice Sendmail
selectively demotes itself to the unprivileged user/group—this is a partial
mitigator, not a complete one.

Being chroot-able and running as an unprivileged user/group are two
important security features common to most well-designed network
applications today. Just as a good firewall policy aims for both prevention and
containment, a good application configuration also takes into consideration the
possibility of the application being abused or hijacked. Thus, the true measure
of an application's securability isn't only about the number of CERT advisories
it's been featured in, it also must include the mitigating features natively
supported by the application.

 Conclusion

The risk-based approach to security has two important benefits. First, rather
than always having to say no to things, security practitioners using this
approach find it easier to say “yes, if” (as in, “yes, we can use this tool if we
mitigate Risk X, contain Risk Y” and so on). Second, by focusing not only on
prevention of known threats but also by considering more generalized risks,
the risk-based approach fosters defense in depth, in which layered controls
minimize the chances of any one threat having global consequences (firewall
rules plus chrooted applications plus intrusion detection systems and so on).

I hope you've found this discussion useful, and that it's lent some context to the
more wire-headed security tools and techniques I tend to cover in this column.
Be safe!

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Linux for Suits: Grass Roots vs. Giant Roars

Doc Searls

Issue #129, January 2005

While big-name companies scramble to protect business models, this company
is making open-ended devices that give customers the right to control their
own telephone and media experiences.

In January 2003, after a big PR buildup that included coverage in Reuters and
USA Today, Kunitake Ando, president and CEO of Sony, announced in a keynote
to the Consumer Electronics Show (CES) that his company and Matsushita
would lead the rest of the industry's giants into a future of “always on” and
interactive devices running a new Linux distro.

That following July, LinuxDevices wrote, “What began as a small but powerful
call for an embedded Linux collaboration among Japanese consumer
electronics (CE) manufacturers last December turned into a roar today, as eight
consumer electronics powerhouses proclaimed the establishment of the CE
Linux Forum (CELF).” Members included Sony, Matsushita, NEC, Philips,
Samsung, Sharp and Toshiba. Later, the roster grew to include IBM, Mitsubishi,
Metrowerks, Motorola, Nokia, LSI Logic, HP, Fujitsu, Hitachi, Phoenix, Sanyo and
MontaVista.

Naturally, I expected to hear an even bigger roar for Linux at CES/2004 the
following January. Instead, out of more than 3,000 exhibitors, only 11 bothered
to mention Linux in their show guide texts. Except for RealNetworks, none of
them were A-list companies. Today, the CELF site appears moribund. The
copyright says 2003–2004. The last update was in February 2004. When I write
to the e-mail address on the site, I hear nothing back.

So, rather than a great roar by a choir of giants, CELF instead looks like what old
hands in Silicon Valley call a Barney agreement. That's where “partners” say “I
love you, you love me”, and not much else happens.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Even if CELF eventually does produce a working distro, it reminds us in the
meantime that Linux is fundamentally a grass-roots phenomenon. It's bottom-
up, not top-down. I don't mean to discredit IBM, HP, Novell, Oracle or any of the
other BigCos that promote Linux, support its development and fly the penguin
flag. I do mean to credit the little guys who not only develop Linux, but deploy it
in the marketplace. Especially the ones who deliver and not merely promise.

Take Unication, one of the 11 exhibitors waving the penguin flag at CES/2004.
Unication is a Taiwan-based company that has, among other things, made
Motorola pagers for the past 13 years. Unication recently has branched into
building wireless gateways, servers, VoIP products and PDAs, all leveraging
Linux's virtues as free and highly useful building material. The result is some
very capable stuff, unencumbered by the product marketing strategies
practiced by Unication's giant competitors.

Case in point: Unication's SC-203, an 802.11g-based router that delivers seven
Web services in one device: Web, e-mail, printing, voice over IP (VoIP), VPN,
firewall and media streaming, including MP3 audio and MPEG video. It's not
hard to imagine the possibilities. Best of all, it doesn't come with any big
vendor's digital rights management (DRM) or proprietary software lock-in. It's a
box of open standards, ready to use. So, when you think about uses, you don't
have to wonder what Sony or Philips or Apple or HP has stuck in there to please
their lawyers and “content partners” while keeping you from doing any darn
thing you want.

For example, the SC-203's VoIP SIP server, which works like a proxy server,
supports VoIP calls over wired or wireless (Wi-Fi) connections. Users can make
VoIP calls from any open Wi-Fi hotspot, through the SC-203. VoIP calls require
paired FXS (phone) and FXO (line) devices. These are available from a variety of
makers. Unication's server-side VoIP gateway is the WG-205, which comes in
two models: one with two FXS ports and the other with one FXS (phone) and
one FXO (line) port. The WG-205's default server IP points to the SC-203. Private
IPs are permitted behind the SC-203 to make VoIP calls. The WG-205 either can
connect to the SC-203 LAN port or connect independently through an ISP, as
long as the Net is available.

The company also makes a Wi-Fi and Ethernet-based VoIP phone you can carry
on the road. The U-Phone features include call holding, call forwarding, caller
ID, configurable ring tones and melodies, a FIFO log of the last ten calls and the
ability to redial any of them. It has a talk time of 2.5 hours and a standby time
of 30 hours. So you carry a VoIP phone number wherever you go, ready for use
when you're within Wi-Fi range of the Internet. You need some smarts to make
it all work, but there's an influential market (that would include Linux Journal
readers) for whom that's exactly the idea.

Several years ago, David Isenberg famously got himself fired from AT&T by
writing a landmark essay titled “The Rise of the Stupid Network”. It was an
argument for reversing the phone company's traditional approach, which was
to maximize (preferably proprietary) intelligence inside the network and to
restrict available use of the network by attached devices. Isenberg said the ideal
model instead was making the network as stupid as possible in the middle,
supporting unlimited and unrestricted intelligence connected from the outside.
In other words, he wanted AT&T to build services that respected the wisdom of
the Net's end-to-end architecture.

What Isenberg recommended was the corporate equivalent of a sex change,
and AT&T couldn't bear to think of it. Smart middles always have been the telco
and cable-carrier equivalent of the top-down producer-to-consumer worldview
of every large producer in the Industrial Age. Smart-middle thinking is what
accounts for the asymmetries of your cable and DSL connections. Asymmetrical
bandwidth (fat-down, thin-up) certainly can be justified by typical usage
patterns. But they're also deployed to restrict customers to the roles of
consumers. There is no evidence that the prospect of consumers is even
thinkable to most telephone and cable companies. Never mind that many of
the Net's own infrastructural building materials, including countless servers
running the LAMP suite on Linux, are products of the demand side, supplying
itself.

So is it any surprise that we've hardly heard a peep about CELF? The very
notion of “consumer electronics” presumes restricted autonomy on the
demand side. Whatever CELF produces, we can be sure Linux in most cases will
be too deeply embedded to serve as a freely useful platform for anybody other
than the manufacturer. I hope they prove me wrong, but I'm not holding my
breath.

Back at last year's CES, the coolest device I saw was Unication's Magic PDA. It's
three devices in one: a PDA, an MP3 player and a VoIP phone. At the time of
this writing, the phone uses only the G.711 codec, which typically is used for
intranet calls. The next phase, I'm told, will implement all VoIP properties,
including the support of G.723.1, G.729, G.726 and G.711u/a codecs, plus
electronics to cancel echoes and suppress noise. What I instantly loved about it,
however, was its ability to broadcast MP3 files on any frequency of the FM radio
band, so you can listen to it on a car radio or home audio system.

I normally don't like to plug any company, but Solon Lee of Unication has been
a helpful and patient correspondent while I worked on this piece, and I love to
see pioneering companies like his compete in a market dominated by roaring
giants. Especially when those giants make only noises where their products
ought to be. If you can help Solon and his company find regional agents and

distributors, anywhere in the world, drop a note to Unication at
salesenquiry@uni.com.tw.

I'm also interested in progress reports on CELF and anything else anybody is
doing with Linux at CES/2005. I'll be there, rooting for the roots.

Resources for this article: /article/7861.

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal. His
monthly column is Linux for Suits and his biweekly newsletter is SuitWatch. He
also presides over Doc Searls' IT Garage (garage.docsearls.com), a sister site to
Linux Journal on the Web.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:salesenquiry@uni.com.tw
https://secure2.linuxjournal.com/ljarchive/LJ/129/7861.html
mailto:info@linuxjournal.com
http://garage.docsearls.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF: 441 Reasons to Go Linux

Brooke Partridge

Issue #129, January 2005

HP's community center in Mogalakwena, South Africa, produced an industry
first—a four-headed PC.

Walk around any of the four computer labs in the Computer Science
Department at the University of the North (UNIN), 150 miles from
Johannesburg, South Africa. The first thing you notice is that half of their 250
computing desks have no computers on them.

The lab technician, Melt van Niekerk, will tell you that the aging machines they
do own are used 12 hours a day by 2,800 students and the warranties expired
two years ago. Freddy Nailana, Head of the Computer Science Department,
explains that his budget was cut from 2.5 million rand (about $400,000 US) in
2001 to only 130,000 rand last year.

The challenges could not be more evident. How can UNIN increase student
access to current technology for the lowest possible price, without sacrificing
warranty and service?

At HP, we think we have the answer in the Multiuser 441 desktop solution. This
desktop system allows four users to work simultaneously and independently
on the same CPU, hence the name 441, or four-for-one. We began with a
modified Linux kernel and added four monitors, keyboards, mice and sound
and graphics cards. The result is a desktop system that costs about half the
price of four standalone desktops.

Linux was the key to developing the 441 solution. It's inherently a multiuser,
multitasking operating system. It has great security, stability, power and cost
effectiveness—additional elements required by these markets.

When we launched the HP 441 Multiuser desktop solution in South Africa in
March 2004, people understood they were looking at a unique approach to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

solving emerging-market challenges. The four-users-for-one-CPU configuration
came with a low price and no special licenses. It also has a healthy bundle of
preloaded educational software and a solid warranty, making it ideal for cash-
strapped schools.

At HP, we've received a flood of inquiries from people as far afield as Brazil,
Austria, Canada, Malaysia, New Zealand and Egypt—all of them asking, “When
can I have one?”

This is a good problem to have. The demand we're seeing is a result of a unique
approach to designing solutions for emerging markets. Much of the market
research, product R&D, marketing, distribution and strategic rollout of the 441
has followed a nontraditional path within HP.

The Emerging Markets Solutions team at HP manages two “solution incubation
sites”, one in India and another in South Africa. Known as HP i-communities (i
for inclusion), both facilities are located in relatively remote, rural areas that
have not seen the kind of information technology explosion that has
transformed urban centers like Bangalore and Johannesburg.

The HP i-communities serve as test beds for products and services that are
tailored specifically to the needs of rural emerging-market communities.
Through our deep engagements there, we learned that we couldn't simply take
existing HP products and make them available to people in remote areas. We
had to work closely with local users to understand their needs—which are very
different from those of customers in developed economies—and then design
solutions to meet them.

Partnering with numerous public and private organizations, i-community teams
have initiated an impressive array of technology-based social and economic
development programs. The challenge—and opportunity—for HP is in
commercializing these solutions for other emerging markets around the world.

The 441 is the first HP product commercialized for this environment. It was
piloted at the Mogalakwena i-community in South Africa and is being used in
call centers, tribal authority offices and schools around the province. Since early
2004, the 441 has been commercially available throughout South Africa.

The introduction of the 441 has even shown up on the radar screen of local and
national government officials. The South African government is a strong
proponent of open-source software. It is seen as a strategic way to lower
development costs, localize standard applications into the nation's 11 official
languages and build the skills set of local software developers.

The support of Linux from governments across emerging markets makes the
441 a very timely product. At HP, we're excited about the 441, but we're also
excited about the process that led to its development. Deep engagement in
rural, developing economies is pointing to a vast new market for the company.
The new solutions developed for this market will draw on the strengths and
advantages of open source.

With this kind of engagement and innovation, we believe we can fill the
computer labs at the University of the North for a price they can afford.

Brooke Partridge is Director of Business and Market Development for HP's
Emerging Market Solutions Organization, a team that develops and
commercializes technology for developing economies.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Network Security Hacks—100 Industrial-Strength Tips &

Tools by Andrew Lockhart

Alex Weeks

Issue #129, January 2005

This book dispels the myth that simply having a firewall is a complete security
design.

O'Reilly, 2004

ISBN: 0-596-00643-8

$24.95 US

With the ever-growing complexity of networks, administrators need an intricate
array of tools and skills to ensure their network's security. Andrew Lockhart's

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

practical Network Security Hacks—100 Industrial-Strength Tips & Tools provides
an abundance of clever hacks to help fill your needs.

As with the other books in the series, this is a compilation of tips collected from
real-world users who have faced the same problems that most of us deal with
today.

The hacks range from automating simple system administration tasks, such as
checking for patches that have been applied, to restricting permissions on
filesystems that rarely change. Concepts are explained clearly, making them
easy to understand, yet they still offer advice to seasoned professionals. I
recommend Network Security Hacks for relatively inexperienced administrators
as well as for experts.

This book dispels the myth that simply having a firewall is a complete security
design. As a consultant for several large companies, I've seen how prevalent
this idea really is. Instead, the book first approaches security by discussing how
to harden your servers. Of course, it still offers tips on firewalls and packet
filtering.

Unlike many others, Lockhart's book is comprehensive; covering tips for UNIX,
Linux and Microsoft Windows systems. Because no system or network is
impenetrable, meaning every system can be compromised, Lockhart offers a
critical approach to minimizing the impact of a security breach. From hardening
a server, applied encryption, trending and logging to intrusion detection and
incident response, Andrew Lockhart's Network Security Hacks—100 Industrial-
Strength Tips & Tools is an excellent resource.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 HP Compaq nx5000

Don Marti

Issue #129, January 2005

With the nx5000, HP gets closer than anyone has yet to a general-purpose
business PC running Linux.

Product Information.

• Vendor: Hewlett-Packard

• URL: www.hp.com
• Price: $1,199+ US

The Good.

• Swap out the DVD-ROM/CD-RW drive for a spare battery.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/129/7845f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7845f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7845f1.large.jpg
http://www.hp.com

• 1400×1050 screen and keyboard with vi-friendly layout.
• Good sound from JBL speakers.

The Bad.

• Only two CDs of software installed.
• Heavy.
• Mystery lock up.

We covered HP's new Linux laptop at LinuxWorld in August 2004, and they
loaned us one for a full review that fall. The nx5000 is a mid-size business
notebook PC with a base weight of 5.75 pounds and a base price of $1,199.
Display choices are XGA (1024×768) or SXGA+ (1400×1050), for an additional
$75. Our review unit had the 1400×1050 screen and a combo DVD/CD-RW drive
and weighed in at 2.85kg, or 6.28lb. The processor was a 1.4GHz Intel Pentium
M. The nx5000 comes with 256MB to 2GB of memory, and ours had 512MB. A
subset of SuSE 9.1 Professional is preinstalled and two CDs are included.

Physical layout is thoughtful, with a good-size keyboard. As on many laptops,
the Ctrl keys are undersized and squeezed into the corner of the bottom row
with a bunch of other modifiers. For regular use, you'll want to swap Caps Lock
and Ctrl. The Escape key is undersized but in a convenient place above the tilde,
and the backslash/pipe key is big and where it belongs, above Enter.

Overall size is larger than lightness-crazed road-warrior types will be
comfortable with, but if you're transporting it only for commuting or occasional
trips, the extra size and weight could be a good trade-off for you.

HP claims a full working day of battery life with both batteries installed, but
laptop battery life is a notorious “your mileage may vary” measurement. Under
light use with wireless on, including some text editing, Web surfing, listening to
Internet radio and uploading the photo for this article, the nx5000 with one
battery lasted more than 4.5 hours. HP installs Thomas Renninger's powersave
dæmon, which is a nice touch.

 Hardware Support

The Atheros a/b/g card was not configured out of the box, but a quick point-
and-click session to set it to DHCP brought it up on an 802.11b network. The
installed Atheros driver is proprietary. There's one other proprietary module
installed, the slamr module for Winmodem support.

Laptop audio is usually tinny and awful, but the nx5000's speakers, branded
with a JBL Pro logo, are consumer audio quality and plenty good enough for

Internet radio, playing games or watching a DVD. If you use the nx5000 as your
home entertainment system too, the weight starts to look not so bad. Speaking
of watching DVDs, the included DVD-playing software is InterVideo's LinDVD,
which is DVD CCA-licensed. Playback was smooth, even with tasks running in
the background. For day-to-day use, it might be more practical to swap out the
DVD drive for the extra battery, use an independently developed DVD player
that lets you play movies from the hard drive and simply connect an external
drive when needed.

The volume controls for the speakers and headphones work separately, and
the KDE volume control is configured to control speaker volume only. We had
to go to the YaST volume settings control panel to turn up the headphones.
This is a little confusing to start with, but the right thing for those times when
you want to listen in private and not annoy everyone else in the library or café
when you forget to plug in the headphones and an instant message comes in. A
little user-interface help is needed here.

 Devices

Everything onboard works, but how well is the system configured to work with
the external USB devices that are your eyes and ears on the road?

We plugged in a brand-new Canon PowerShot S410 camera and fired up the
preinstalled Digikam to pull the photos off with no configuration needed.

Plugging in a Sony DCR-HC20 MiniDV camcorder meant a little command-line
work. The IEEE 1394 modules were installed, and following the instructions in
Marcel's column in the December 2004 issue, we modprobed them in. Kino was
not installed, but we brought in a copy from a SuSE 9.1 Professional DVD and
captured some video.

It's understandable that a nonlinear video editing tool is missing from a default
laptop install, but also strangely missing was OpenSSH, which people at Linux
Journal use constantly. We pulled that in from the SuSE DVD as well. If you
invest in this laptop, you also might want to pick up a copy of the full
distribution so that you can get your favorite tools just as easily.

 Support

Fortunately, for our ability to test HP's Linux support, we found one thing that
didn't work—the front-panel volume and mute buttons. We got through to a
Linux support person quickly, but the nx5000 he had seemed not to have the
same load as the review unit, and the solution that got the review unit working
didn't work for him. The solution was to run LinEAK, which was installed but not
running in our KDE session.

Finally, right before we sent the laptop back, one person was able to get the
nx5000 to lock up twice in one day simply by editing a file with Vim in a Konsole
window. Ctrl-Alt-Backspace wouldn't work to kill X, and we weren't able to
duplicate the problem.

With the nx5000, HP gets closer than anyone has yet to a general-purpose
business PC running Linux. If you want to make your company's Linux desktop
migration a treat of working in café and enjoying media instead of a chore, get
one to evaluate. Dorm-room or small-apartment dwellers can consider this as a
good main computer and entertainment system.

Don Marti is Editor in Chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Open Source Licensing: Software Freedom and Intellectual

Property Law by Lawrence Rosen

Don Marti

Issue #129, January 2005

If you ever have trouble getting the right to use free software at work because
of license concerns, buy a copy of this book.

Prentice Hall, 2004

ISBN: 0-13-148787-6

$39.99 US

Software licenses are like pluggable authentication modules—bad to try to re-
implement yourself but important to get right if you want to be secure.
Technology attorney Lawrence Rosen offers a manageable introduction to the
subject in this book. If you ever have trouble getting the right to use free
software at work because of license concerns, buy a copy of this book. If your
company is planning to release free software, Open Source Licensing gives you

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the background to get the most out of your meetings with a lawyer about the
license.

This book is a useful field guide to the rights and obligations that the common
free software licenses offer and their strengths and weaknesses. It also covers
the essentials of copyright and patent law as they apply to software. Rosen also
introduces his new licenses, the Open Software License and Academic Free
License, which he says fix yet-unexploited legal bugs in older licenses.

For someone who was motivated to write his own set of software licenses,
Rosen is generous to the industry-standard GNU General Public License (GPL).
He gives the GPL a clean legal bill of health, which makes this book helpful
when deciding to use and contribute to GPL-covered software. But he does
offer a clear explanation of why a software author would want the additional
teeth that his new licenses offer. By binding users to a contract, he lets the
licensor set the venue for any lawsuit over the license, insist on attorney's fees
and obtain other advantages in court.

This book does an especially good job of covering how the common open-
source licenses handle software patent threats and the differences in the
patent defense measures in each license. However, it would have been helpful
to include a discussion of one approach that patent holders have taken when
contributing patented methods to GPL software—offering a patent license
separate from the GPL but ostensibly compatible with it. Linux contributions
from IBM, Red Hat and FSMLabs are licensed this way, under three different
patent grants.

Although the book is strong on the legal side, it's weak on what many consider
the overwhelming network effects of the GPL and the advantages of keeping
new projects compatible with the existing universe of GPL code. It's surprising
that a 2004 book that covers both the Mozilla Public License and the issue of
relicensing doesn't mention that Mozilla began relicensing to include the GPL in
2001.

The business decisions about what software license to adopt are yours, and
this book's power to dispel Fear, Uncertainty and Doubt about licenses and
bring FUD victims into the software commons is invaluable. Reading Open
Source Licensing is an ideal first step in the license decision process.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor: January 2005 - Security on the Go

Don Marti

Issue #129, January 2005

Now that work is just a verb, not a place, are all your security assumptions
wrong?

It's time to question some security assumptions. Regular users' systems are
always on an internal network with a firewall between them and the Internet.
The only hosts reachable from the outside are a few bastion hosts. Bastion
hosts run a strictly limited set of software, and only sysadmins have accounts
on them. Computer security depends on physical security, because anyone
who breaks into the server room can boot the server from a rescue disk and
have his or her way with the files.

Meanwhile, in the real world, you have a copy of the project you're working on
and a bunch of confidential e-mail on your laptop, and you're drinking La Minita
at Dana Street Roasting Company while you peruse your project's Request
Tracker and hold a Jabber meeting with people in three countries.

Public wireless cafés are a lot of great things, but secure corporate networks
they're not. Because more and more companies would rather pay for laptops
and drop-in office space than cubicles and desktops for all, you can wave bye-
bye to the neat security chart with a bunch of stuff between the user and the
menacing Internet Cloud.

Linux distributions are starting to offer good support for some encrypted
partitions, which do the attacker no good without the key. Mike Petullo takes
the process to its logical extreme and encrypts the root filesystem, which
means you can encrypt everything (page 62).

The less we trust the network, the more we need encrypted e-mail. At Linux
Journal, we rolled out GNU Privacy Guard (GPG) for everyone. Encrypted mail
isn't the tweaky mess it used to be, now that the common mailers are

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

integrating GPG support. Find out how to make secure mail a part of your work
life in Roy Hoobler's article on page 52.

Now that everyone is outside all the time, the problem of removing unneeded
software and keeping packages up to date is even more critical. Fortunately,
many of the Linux distributions offer easy tools for installing new versions.
Jeremy Turner shows off some screenshots on page 46. Meanwhile, we're still
experimenting with SELinux, which could lock down even insecure versions of
software to contain attacks. James Morris gives us a peek at the SELinux future
on page 56.

The new mobile way of working isn't only a burden for sysadmins. Users often
prefer to escape from cubicle-land. Why not make your company's Linux
migration a productivity and multimedia treat, not a retraining chore? Just as
Lincoln Durey's “Dear Laptop Vendor” was going to press in the fall of 2004, HP
made the bold move of offering Linux preinstalled on a full-featured notebook
computer. We had one at Linux Journal to try out, and yes, we're impressed.
Get the details, including the results of a support call, on page 74.

Have fun keeping your systems secure for the real world, and if you see me
editing the next issue at a coffeehouse, come over and say hi.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 Cliché Busters

I'm in the building industry in the Chicago area and had an interesting
conversation the other day with one of my suppliers. In the past I've heard the
phrase “You'll never lose your job sticking with Microsoft.” I don't believe that's
the case anymore; the supplier I just mentioned, this week, let go of its IT guy of
the last 12 years because he wanted to stick with Microsoft and wouldn't
consider any Linux alternatives.

—
Joseph B. Roth

 Good Articles in October

Man, that October 2004 issue rocks. I particularly enjoyed Forster's “The Politics
of Porting”. It's always a good story when someone bets it all and wins.

Hollenback's “Point-to-Point Linux” brought back memories of how we used
Linux for T1 connectivity at Wayport. There is a single-port LMC (now SME) T1
card in every Wayport hotel. Hats off.

—
Jim Thompson

 Choice in Fortran Compilers

Many Fortran programmers now use Linux, and there are about ten vendors
selling Fortran 95 compilers for Linux. I would like to make Linux Journal
readers aware of two open-source Fortran 95 compilers under development,
g95 (see www.g95.org) and gfortran (see www.gfortran.org). g95 is already able
to compile many large production codes, as listed on the g95 site. gfortran will
become part of the Gnu Compiler Collection, gcc.

—

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.g95.org
http://www.gfortran.org

Vivek Rao

 Portugal, Land of Fine Wine

I am an LJ subscriber and Linux user. Every month I read the magazine cover to
cover and always enjoy every article, especially if it has some electronic device
involved, like the USB programming articles or some embedded Linux device
like the Linksys wireless router.

One article I always read with special attention is Cooking with Linux by Marcel
Gagné. Besides the technical information, I always am excited to see what wine
will he talk about each time. And until now, and I think I am not mistaken, he
has never mentioned the fine wine from my country, Portugal. I expect Marcel
to correct this fault in one of the next issues of LJ. I will not give any example of
Portuguese wine here, because I am confident Marcel will find the finest brands
of Portuguese wine. Regards to all. Keep the good work.

—
Luis Sismeiro

I believe he already may have some wine from Portugal in the cellar. Check
page 26. —Ed.

 Photo of the Month: Vin de Pingouin

Here is an image of a cute wine bottle; Francois may want to buy a case or two
for the Linux chef. It was recently featured at a party to celebrate a successful
prototype of my Wi-Fi HackTenna Project.

—
Pat Kane

 Hosting Provider Supports SCO

Wow, EV1 has a full page ad (November 2004, page 87). Could this be the same
EV1 caught consorting with SCO's “Linux License” scams last year?

—
Harold Stevens

Yes, EV1 gave hundreds of thousands of dollars to The SCO Group, the
company known for its apparently baseless legal attacks on Linux. At the time,
some posters to the EV1 message board wrote that they were Linux users
canceling their accounts over this controversial decision. —Ed.

 Security Advice

I read Don Marti's October 2004 column with interest. I agree that Linux is quite
a way ahead of some OSes when it comes to security. SELinux is an excellent
example of this. However, I differ with Don concerning his plan to implement
SELinux for “simple bastion hosts such as name servers”. Although SELinux
does bring a lot to the table, it is probably overkill for the majority of
applications Linux is used for. When you increase the security of a system you
reduce its usability. In the majority of cases, following a few simple steps will
result in a very secure system without having to implement SELinux.

1) Perform OS installation disconnected from a network and install only those
packages that are required for the system to function. 2) Install updated
packages from media (CD-R, tape) created on another system. 3) Configure
system services to run in as secure a mode as possible. For example, run BIND
in a chroot()-ed environment. 4) Consider implementing a host-based firewall
solution. 5) Enable comprehensive logging and develop processes that allow
you to examine your logs thoroughly. 6) Keep your system packages up to date.

An excellent source of information to help secure Linux, and several other OSes
(as well as Oracle and Apache) can be found on the Center for Internet Security
Web site at www.cisecurity.org.

—
Keith Rice

On a name server, where no users need to run applications, the extra layer of
protection could be worth the setup. See page 56 for more on SELinux. —Ed.

 Less Clustering, More USB

Almost time to renew—I got my second reminder a while back. Then the
November 2004 issue arrives and contains very little I can even understand, let
alone need. Some of your articles are so focused that surely no more than two
or three people in the world could benefit from them. Oscar?? Lots of cluster
stuff. Event mechanisms???

Big debate on whether to renew. I can see what Marcel's article is about, but
can't see anyone needing to do it. Some useful ideas on bash in the Paranoid
Penguin article. No Best of Tech Support. Mostly a wasted edition.

Then I see Coming Next Month!!! Entertainment. Just the thing I need help with.
Yes—renew. And tell Dave—he'll want to see this too. We'll just hope they
address the problems I keep having: sound, video and USB. And hope for more
desktop stuff: Bash, gimp, spam control and USB help.

I'd like to end with “Keep up the good work”, but have to make it, “Help me
more.” The check is in the mail.

—
Bruce Bales

http://www.cisecurity.org

 Penguin Cake for Web Class

After seeing the Tux cake in the November 2004 issue, I just had to send you a
photo of the Tux cake one of my LAMP students made to celebrate the end of
the Summer semester.

—
Darryl Bedford

 Sweden.population++;

Great seeing Sweden featured in your LJ Index, October 2004. Unfortunately,
the figures are a bit outdated as we are now officially 9+ million living here.

—
Nit Picker
aka Martin S.

 Conference on Non-Linux Web Server?

I was cruising Netcraft and saw that the LinuxWorld Conference and Expo site is
hosted on Microsoft Windows and IIS. I think a small letter-writing campaign
could fix that problem. I think mentioning this in the editorial section would
generate enough hate mail for these guys that they would correct their
oversight.

I'm sure we could gather up resources to build, configure and maintain that
server from volunteer resources. So they would be out only the hosting costs.

—
Dan

It's a good thing hate mail doesn't work, or everyone with software to promote
would be flaming you. If you want to attend a conference with a Linux-based
Web site, try linuxsymposium.org. —Ed.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://linuxsymposium.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• BZFlag:
• Devil's Pie:
• LJ Index—January 2005
• On the Web
• Ten Years Ago in LJ: January 1995
• They Said It

diff -u: What's New in Kernel Development

Zack Brown

Issue #129, January 2005

Markus Lidel has been named the official Intelligent Input/Output (I2O)
maintainer. Designed by the I2O Special Interest Group, I2O is a hardware
specification that allows hardware to offload I/O processing from the CPU,
raising the performance of I/O on that hardware, while at the same time
reducing its impact on the running system. Markus is a relative newcomer to
Linux kernel development, first appearing in the kernel changelogs in March
2004 with some minor I2O patches for the 2.6.1 kernel. Alan Cox, as with so
many other projects, was the de facto maintainer at the time and accepted
many patches from Markus over the following few months. By July 2004 and
the 2.6.8 release, however, Markus in turn was accepting I2O patches from
other developers. In August 2004, Warren Togami nominated Markus to be the
official maintainer, and after an acknowledgement from Andrew Morton,
Markus updated the Maintainers file in September 2004 to list himself as the
official I2O maintainer. Shortly thereafter he initiated a rewrite/reorganization
of the I2O code, which was accepted into the 2.6.9-rc2 kernel, in accordance
with Andrew's new looser policies on large changes within a stable kernel
series.

Kernel development is often fraught with controversy and dispute. Recently the
pwc driver, supporting Philips Web cameras, erupted in a dispute between the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

driver maintainer, Nemosoft Unv, and Linux Journal columnist and kernel
lieutenant Greg Kroah-Hartman. To support various hardware, a hook to allow
binary modules to link into the kernel had existed for a long time in the driver,
against kernel policy. Eventually, Greg insisted on its removal, and Nemosoft
asked Linus to remove the whole driver from the kernel. Now, under the GPL,
the driver author has no legal right to insist on this, but Linus Torvalds felt it
was important to honor the author's wishes, especially if the code in question
was about to be unmaintained. This turned out to be an unpopular decision
with people like Alan Cox, who saw the licensing issue as much more cut-and-
dried. Nemosoft had released the code and couldn't just take it back. To
illustrate his point, Alan said he might as well ask Linus to remove all of Alan's
contributions over the years, which would in fact remove quite a significant
percentage of the kernel and completely devastate the entire project. Alan's
point simply was that it made no sense to honor developers' requests in such
cases. After much arguing, Luc Saillard reverse engineered the binary module
in question and posted a new version of the pwc driver, without the disputed
hook.

David Engebretsen decided to stop being the PowerPC maintainer and has
been succeeded by Paul Mackerras and Anton Blanchard, both of whom have
contributed many PPC patches over the years, along with Benjamin

Herrenschmidt, Tom Rini and many others. David maintained the PPC port as
part of his job at IBM and led the team that did the original Linux port to the
PPC64 architecture.

Jeff Garzik has created blktool, an easier, more generic version of the existing
hdparm utility. Like hdparm, blktool can wreak havoc on disks if used
improperly. Also like hdparm, blktool still is fairly IDE-centric, though Jeff is
working on SCSI, I2O and RAID support. hdparm's IDE-centrism may stem from
the fact that it was developed by Mark Lord, the original IDE subsystem
maintainer back in the early days. Like hdparm, blktool provides a command-
line interface to the nitty-gritty details of your disk, allowing the user to make
fine adjustments in behavior, that could result in noticeable speedups. The
precise interface used by blktool's command line is still in flux; in particular,
Alan Cox feels that as long as a new tool is being developed, it should fix some
of the problems hdparm displayed, particularly in the command-line interface.
Jeff seems amenable to various alternatives, and it looks as though the final
tool will have a variety of alternative mechanisms for users to get their points
across. The real point seems to be that Jeff's initial attempt has found support
among kernel developers, and various folks are hacking it into shape.

BZFlag: www.bzflag.org

Don Marti

Issue #129, January 2005

The name of this network 3-D tank battle game pays homage to Atari's 1980
arcade classic, Battlezone. Shoot the other team's tanks and capture their flag,
or simply go “Rogue” and shoot whomever you want. There's a large player
community and action happening on dozens of servers all the time.

The basics of operating your tank and shooting are easy to learn—but beware:
some people are very, very good at this game.

Devil's Pie: www.burtonini.com/blog/computers/devilspie

Don Marti

Issue #129, January 2005

Isn't moving windows manually a drag? If you're running a simple window
manager, such as Metacity, but you want the window matching and
customizing features of a more complex window manager such as Sawfish,
here's an add-on X utility for you. Write an XML config file to match windows
you want to customize, and let Devil's Pie position or tweak them for you. For
example, you can pin a certain application to appear on all desktops or move all
terminal windows with a certain title to their own desktop.

LJ Index—January 2005

• 1. Millions of dollars spent for Oklahoma City's new public-safety Wi-Fi
system: 90

• 2. Square miles covered by the new system: 650
• 3. Degree of accessibility to the Net over the system by the public: 0
• 4. Number of cities belonging to UTOPIA, the Utah Telecommunications

Open Infrastructure Agency: 14
• 5. Thousands of households in UTOPIA's footprint: 140
• 6. Percentage of UTOPIA that's fiber optic: 100
• 7. Reported percentage of Linux “savings potentials” vs. Microsoft

Windows: 30
• 8. Three-year savings on office apps, in thousands of Euros, for large-scale

enterprises with 2,000 jobs: 525

http://www.bzflag.org
http://www.burtonini.com/blog/computers/devilspie

• 9. Three-year savings on servers, in thousands of Euros, for large-scale
enterprises with 2,000 jobs: 57

• 10. Three-year savings on content management, in thousands of Euros,
for large-scale enterprises with 2,000 jobs: 32

• 11. Three-year savings on databases, in thousands of Euros, for large-
scale enterprises with 2,000 jobs: 21

• 12. Number of enterprises surveyed for the above study: 50
• 13. Peak gigaflops of the new Cray XD1 Opteron/Linux-based

supercomputer in a 12-processor chassis configuration: 58
• 14. Peak number of processors for the new Cray, with 12 chassis in one

rack: 144
• 15. Peak gigaflops for a full rack configuration: 691
• 16. Price in millions of dollars of the new Cray: 2
• 17. Speed in MHz of the MIPS-based Sha hu (little tiger) system on a chip

for embedded Linux designs, ready to run Linux: 400
• 18. Typical power draw of the Sha hu, in watts: 1
• 19. Millions of students to whom China wants to bring computing: 200
• 20. Number of computers China wants to deliver, per student: 1

• 1–3: CLS Communications, over Business Wire
• 3–6: UTOPIA
• 7–11: Research & Markets
• 12–16: InternetNews
• 17–20: LinuxDevices

On the Web

Embedded systems are what software wants to be when it grows up.
Challenges such as using less memory, booting quickly and staying up for a
long time without updates are requirements. Whether you're doing an in-car
Linux system or developing phone switches for work, our Web site can help.

• If you're curious about what is involved in developing for embedded
platforms and targets, check out Dr Richard Sevenich's new Web series, a
hands-on introduction to embedded development. Part 1
(www.linuxjournal.com/article/7848) explains how to pick a target for your
embedded design. Future articles will discuss hardware setup, getting
familiar with uClinux, adding a GUI and both porting and creating new
applications. Follow his progress on-line or grab your own target device
and become part of the project.

• We've been following Carbot, an in-car computer company, in its quest to
reduce OS boot times, a major barrier in the widespread adoption of car-

http://www.linuxjournal.com/article/7848

ready computers and applications. The ultimate goal was to get a five-
second BIOS boot time. In the final installment of this series
(www.linuxjournal.com/article/7857), author Damien Stolarz reveals
whether the team achieved its goal—“throw away all the useless BIOS
functionality, show video at the bootloader (that is, GRUB splash screens)
and start playing audio as early as we possibly could in the boot
sequence”.

• Our resident telecom and carrier-grade Linux specialist, Ibrahim Haddad,
spends much of his time at Ericsson Canada working on ways to improve
Linux for carrier-grade systems. His article “Critical Server Needs and the
Linux Kernel” (www.linuxjournal.com/article/7855) outlines four features
the kernel needs for deployment on server nodes in mission-critical
environments: “a cluster communication protocol, support for multiple-
FIB, a module to verify digital signatures of binaries at run time and an
efficient low-level asynchronous event mechanism”.

Ten Years Ago in LJ: January 1995

A UUCP connection is a good way to get your feet wet connecting to the outside
world—it will teach you how to manage a news and mail feed.

—Russell Ochocki

We halted one of the PDPs, moved the data input lines over to our PC, and
booted Linux.

—Vance Petree

Built with the CS/EE/Math student and serious developer in mind.

—Red Hat Software ad

They Said It

So when you find somebody smarter than you are, just coast along. Your
management responsibilities largely become ones of saying “Sounds like a
good idea—go wild”, or “That sounds good, but what about xxx?” The second
version in particular is a great way either to learn something new about “xxx” or
seem extra managerial by pointing out something the smarter person hadn't
thought about. In either case, you win.

—Linus Torvalds on kernel management (lwn.net/Articles/105375)

http://www.linuxjournal.com/article/7857
http://www.linuxjournal.com/article/7855
http://lwn.net/Articles/105375

When you think about it, it makes sense. Linux and open-source products are
cheaper, more robust and more secure. Having Microsoft tell us that their
products have lower TCO is like them telling us that the Earth is flat. Right-
thinking CIOs know that Linux and open-source software result in lower costs
and are not likely to be hoodwinked by verbal sleight-of-hand or spurious,
vendor-manipulated TCO studies.

—Del Elson, Open Source in Australia, CXO Today (www.cxotoday.com)

When open-source code is properly analyzed, there's nothing better. But just
putting the code out in public is no guarantee.

—Bruce Schneier (www.schneier.com/blog/archives/2004/10/
schneier_securi.html)

Current scholarly publishing models are not economically sustainable.
Researchers and students have access to a diminishing fraction of relevant
scholarship. But remedies and alternatives are being developed and tested.

—University of California Office of Scholarly Communications
(osc.universityofcalifornia.edu)

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.cxotoday.com
http://www.schneier.com/blog/archives/2004/10/schneier_securi.html
http://www.schneier.com/blog/archives/2004/10/schneier_securi.html
http://osc.universityofcalifornia.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 Distributing /etc/shadow

I am hunting for a utility that I think already must exist somewhere. Here is the
problem. Government computers need to have all passwords updated more
frequently these days, including the root password. Until now, we had so many
flavors of hardware and OSes that the thought of SSHing a copy of /etc/shadow
or /etc/passwd to all machines was a moot point, simply because the different
OSes required different entries for root. Overwriting the root entry on a
machine with the syntax for the wrong OS was not worth it. I suppose the
biggest problem with doing a blind overwriting of the files would result in
possibly incorrect shells or login paths for root. However, we have been
working at getting rid of all of the non-PC workstations we had (SGIs, Suns, HPs
and so on) so we can attack the virus and patches problems with hopefully one
OS to worry about. This means we simply can plop a new copy of the root entry
for /etc/shadow or /etc/passwd to all machines via SSH.

Do you know if such a tool exists? I imagine some sort of script has been
written that can be tweaked easily to propagate the changes. Some machines
are on a domain with a DNS server. The ones not running DNS are running NIS.
I am not familiar with the DNS ones yet, but I know the ones running NIS still
have to have root changed locally. So far, we have been telnetting or SSHing to
each machine one at a time to get the new root password in, because the root
password won't map to each machine. The machines need the root accounts
updated, especially if we were to need to go to single-user mode.

—
Irene Paradis

irene.paradis@us.army.mil

NIS has been used classically to solve this problem. However, there is really
only one solution for the root password: you should update the /etc/shadow
file. You also could use a RADIUS server.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:irene.paradis@us.army.mil

—
Christopher Wingert

cwingert@qualcomm.com

You can use rdist to push many copies of a file out to your hosts. See
www.magnicomp.com/rdist. Alternatively, you could disable, or “star out” the
root password by putting a * in the encrypted password field of /etc/shadow,
and use sudo for everything.

—
Don Marti

info@linuxjournal.com

 How to Pass an Option to the Kernel?

What does the “Try linux noacpi, linux disableapic and linux
noacpi disableapic” suggestion on page 72 of the October 2004 issue
mean in response to a Fedora install question? My AMD dual-MP 2800+
regularly crashes and screen dumps. I just noticed a comment about acpi or
apic—I need to read and record next time—on the last screen dump. Having
just read the article, I was excited to reboot and try those commands, but I
couldn't locate them.

—
Doug Baker

cfdbaker@qwest.net

You are asked to pass noacpi or ldisableapic or noacpi
disableapic as a command-line option to the kernel. When the bootloader,
GRUB or LILO, is asking which OS or kernel to boot, you can add these options.
On LILO, press Ctrl-X to get a command line, and then type linux noacp. I
am assuming that Linux is one of the options in the LILO menu. If this works
outs for you, you can add this to /etc/lilo.conf permanently.

—
Usman Ansari

mailto:cwingert@qualcomm.com
http://www.magnicomp.com/rdist
mailto:info@linuxjournal.com
mailto:cfdbaker@qwest.net

usmansansari@yahoo.com

On the GRUB bootloader, the default for Fedora, the process is similar. Check
out the Unofficial Fedora FAQ at www.fedorafaq.org/#otherinstall.

—
Don Marti

info@linuxjournal.com

 Testing CPU under Different Loads

I frequently test Linux machines as part of my job and am looking for a way to
load the CPU smoothly from 0% to 100% to see what happens to certain
applications. When I try to apply a smoothly ramping CPU load, I usually get
either 0% or 100% CPU usage. If I try to sleep for very small increments, I get 0%
alternating with 100%. Do you know of any tool or proven way to ramp the
CPU?

—
Patrick Killelea

p@patrick.net

You could run a program that alternates some CPU-intensive task, such as
generating pseudorandom numbers, with calls to usleep. Tweaking the values
of BUFSIZE and USLEEP in this program lets me get a range of CPU loads:

/* Build with 'gcc -Wall load.c -o load' */
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

#define BUFSIZE 1024
#define USLEEP 10000

char buf[BUFSIZE];

int main (int argc, char **argv)
{
 int f;
 f = open("/dev/urandom", O_RDONLY);
 while (1) {
 read(f, &buf, BUFSIZE);
 usleep(USLEEP);
 }
 return 0;
}

mailto:usmansansari@yahoo.com
http://www.fedorafaq.org/#otherinstall
mailto:info@linuxjournal.com
mailto:p@patrick.net

Thanks to Greg Kroah-Hartman for cleaning up the above code. See man
usleep. To exercise individual CPUs on an SMP machine, try the CPU affinity
system calls covered in Robert Love's article “CPU Affinity” in the July 2003 issue.

—
Don Marti

info@linuxjournal.com

 Single-User Mode

How can I enter single-user mode, runlevel 1, at boot time?

—
Arthur Schroeder

showmeyr@yahoo.com

Edit your boot line in GRUB and add a single to the command line.

—
Christopher Wingert

cwingert@qualcomm.com

You can type single at the LILO or GRUB prompt to boot your Linux machine
into single-user mode. If you always want to boot in single-user mode for some
reason, you can modify LILO or GRUB and pass single as an option to the
kernel. Or, you can modify the /etc/inittab file. There is a line at the top of this
file—mine reads id:3:initdefault on my Red Hat 9.0 Linux box—in which
you can replace 3 with 1.

—
Usman Ansari

usmansansari@yahoo.com

 Luke 5:37–38

I am attempting to install Red Hat Linux 7.1 on my new Dimension 4600 Dell
computer. The installation CD starts, and I have the option to choose the kind

mailto:info@linuxjournal.com
mailto:showmeyr@yahoo.com
mailto:cwingert@qualcomm.com
mailto:usmansansari@yahoo.com

of installation I want. Whatever I choose, after the computer starts to recognize
my hardware—it recognizes my CD-ROM and hard drives—it stops and freezes.
I can do nothing but turn off my computer.

—
Joe Pietro

jm_pietro@hotmail.com

Before you waste too much time, you should use a newer Linux distribution.
Red Hat 7.1 is several years old. Chances are you will have much better luck
with a newer version. I suggest you use Fedora Core 2. Fedora Core, a branch of
Red Hat, always has supported Dell hardware for the most part. You can
download it from www.redhat.com.

—
Usman Ansari

usmansansari@yahoo.com

Red Hat 7.1 has no active source of security updates. It sounds like your
hardware has some security sense. See fedoralegacy.org for support for older
versions of Red Hat Linux. If you want a quick check on whether hardware is
working and Linux-compatible before installing, try the bootable CD
distribution Knoppix from knoppix.org first.

—
Don Marti

info@linuxjournal.com

 Setting Serial Ports for USB-to-Serial Adapters

I have an application that attaches to multiple remote serial devices via multiple
USB to serial adapters. Is there a way to specify that each USB device
enumerates as a specific USB serial port, regardless of the order in which the
USB ports are connected? For example, I always want USB port x to enumerate
as /dev/usb/ttyUSBy. Because this application will be hosted in more than 200
locations, and it is possible that the USB serial adapter might be replaced or
upgraded with a newer unit, solutions based on serial numbers of the USB
device are not optimum.

mailto:jm_pietro@hotmail.com
http://www.redhat.com
mailto:usmansansari@yahoo.com
http://fedoralegacy.org
http://knoppix.org
mailto:info@linuxjournal.com

—
Jeff Dennison

If you are using the 2.6 kernel, udev can do this matching for you. Simply define
a rule based on something unique for a specific USB-to-serial device and use
that to name the device. You mention that serial numbers will not work for you
—try using the topology of the USB device or something else that you can
determine is unique—uniqueness is the key here. If you are using the 2.4
kernel, good luck. You can muck around in the /proc/tty/drivers/usb-serial
directory to try to determine which device is attached to which /dev/ttyUSB
node, but it's a bit difficult—one big reason to switch to a 2.6 kernel.

—
Greg Kroah-Hartman

greg@kroah.com

 Setting Compiler Options for Gentoo

I'm a newbie trying to install Gentoo from a live CD using a stage3 tarball. I've
managed to get to the stage for optimizing my distro. I'm supposed to flag
various options using GCC make. I need only enough to get working and
understand the basics at this time. Any advice?

—
Rebelrouser

Rebelrouser@blueyonder.co.uk

Stick to the settings already given for your live CD if you do not know what to
change. These settings already are present in the /etc/make.conf file. Consult
the Gentoo installation guide for more information on this and how to install
Gentoo properly.

—
Greg Kroah-Hartman

greg@kroah.com

mailto:greg@kroah.com
mailto:Rebelrouser@blueyonder.co.uk
mailto:greg@kroah.com

 Fedora Install Hangs

I am installing Fedora. During installation, at Display Setting for the monitor, I
choose color depth 256 and click OK. But then my screen freezes and the
display is unreadable (blue screen). I don't have any command prompt. Please
help.

—
Chris

fiston63@hotmail.com

You can decline to configure the graphics card and X. Once you have booted
after the installation is complete, try to configure X. Use the lspci -vvv
command to see what kind of card you have. If support for your video card is
not present, try the manufacturer's Web site for available drivers.

—
Usman Ansari

usmansansari@yahoo.com

 Faking Out the Oracle Installer

Does anyone know of a way to fool the Oracle 10g installer into thinking
Slackware is Red Hat, so it at least tries to install? If not, does anyone know how
it detects that Red Hat isn't there?

—
Blake Tullysmith

bdt@vipretech.com

You can use a tool called strace on the installer:

strace oracle-installer

From here, you can figure out what the program is looking for when it refuses
to install.

—
Christopher Wingert

mailto:%0Afiston63@hotmail.com
mailto:usmansansari@yahoo.com
mailto:bdt@vipretech.com

cwingert@qualcomm.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:cwingert@qualcomm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

RTLinuxPro 2.1, ACCPAC Advantage Series Version 5.3, SuSE Linux Professional
9.2 and more.

RTLinuxPro 2.1

FSMLabs has released version 2.1 of the RTLinuxPro dual-kernel real-time
operating system. New features and capabilities of the RTLinuxPro 2.1 include
improved name-space partitioning from the companion OS for better reliability,
error detection and debugging support; enhanced VME support for industrial
and aerospace/defense applications; expanded support for new CPU
architectures; and broadened POSIX APIs for code portability and standards-
based interprocess, interthread and device communication. The RTLinuxPro
Development Kit for embedded cross-development projects also has been
updated for the RTLinuxPro 2.1 release and features the Visual SlickEdit IDE.

FSMLabs, Inc., 115 D Abeyta Avenue, Socorro, New Mexico 87801,
505-838-9109, www.fsmlabs.com.

ACCPAC Advantage Series Version 5.3

Version 5.3 of the ACCPAC Advantage Series accounting system offers a new
transaction analysis feature that enables all users to codify all transactions and
have these codes remain with the transaction for its duration. The presence of
these tags enables report generation and detail analysis beyond traditional
financial reporting. Version 5.3 also incorporates dozens of feature upgrades,
including streamlined security options, throughout available accounting
modules. Other new features include the ability to create and execute macros
from within the ACCPAC Web application. Built-in kitting in the new inventory
control module speeds up processing and fulfillment in conjunction with the
improved order entry module.

ACCPAC International, 13700 International Place, Suite 300 Richmond, British
Columbia, Canada V6V 2X8, 800-773-5445, www.accpac.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.fsmlabs.com
http://www.accpac.com

SuSE Linux Professional 9.2

SuSE Linux Professional 9.2 is now available for standard 32-bit x86 processors
as well as AMD and Intel 64-bit processors. SuSE 9.2 offers Bluetooth wireless
support including automatic recognition of Bluetooth-enabled devices by way
of YaST. Included Bluetooth software allows users to connect to and move
easily among WLANs and other network connections. Other new features and
applications of SuSE 9.2 include KDE 3.3 and GNOME 2.6 desktops;
OpenOffice.org 1.1.3; Evolution 2.0; The GIMP 2.0; Inkscape, a vector graphics
application; and Nvu, a Web authoring system. Included proprietary
applications include TextMaker and PlanMaker, SEP backup software and a
demo version of MainActor 5 video editing software.

SuSE, Inc., 1100 Sansome Street, San Francisco, California 94111, 888-875-4689,
www.suse.com/us.

http://www.suse.com/us
https://secure2.linuxjournal.com/ljarchive/LJ/129/7843f2.large.jpg

Yellow Dog Linux 4.0

Terra Soft Solutions announced the release of Yellow Dog Linux (YDL) 4.0, with
32-bit support for USB-G3s, G4s, G5 Power Macs and through the Freescale
Board Support Package and Genesi Pegasos II ATX boards. YDL 4.0 is built on
Fedora Core 2 and offers both KDE 3.3 and GNOME 2.6.0 desktops, with a new
presentation for both the installer and post-installed desktop environment.
Applications included in YDL 4.0 are OpenOffice 1.1.1, Rhythmbox 0.8.3 and
Mozilla 1.7; development tools include glibc 2.3.3 and GCC 3.3.3, built on the
32-bit 2.6.8 kernel. Other new features for YDL 4.0 include expanded USB
support for peripherals and built-in FireWire support, with bootable FireWire
made possible through manual configuration. Dual-head monitor support also
is available for PowerBooks and G4/G5 Power Macs. Wireless connectivity is
available through the Netgear WG511 54Mb PCMCIA card with D-Link, and
Linksys USB card support is planned for the near future.

Terra Soft Solutions, Inc., 451 North Railroad Avenue, Suite 102, Loveland,
Colorado 80537, 970-278-9243, www.terrasoftsolutions.com.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7843f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7843f2.large.jpg
http://www.terrasoftsolutions.com
https://secure2.linuxjournal.com/ljarchive/LJ/129/7843f3.large.jpg

Sugar Sales 2.0

Sugar Sales and Sugar Sales Professional 2.0, open-source customer
relationship management (CRM) applications built on a LAMP platform, now are
available from SugarCRM, Inc. New features for Sugar Sales Professional 2.0
include a quotes and price list module that allows a salesperson to access and
manipulate data about product pricing and to generate a customized quote
that can be saved in PDF format. Both CRMs offer lead management
capabilities that enable users to track leads generated from marketing
programs, external communications or customer inquiries. Both CRMs also
include Web-based calendaring, automatic e-mail alerts for new sales
assignments, customizable home pages and an increased number of
predefined and dynamic reports.

SugarCRM, Inc., 10080 North Wolfe Road, SW3-303, Cupertino, California 95014,
408-873-9872, www.sugarcrm.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/129/7843f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/129/7843f3.large.jpg
http://www.sugarcrm.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/129/toc129.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Staying Current with Your Distribution's Security Updates
	Jeremy

Turner
	Knowing When to Update
	RPM-Based Distributions
	Debian-Based Distributions
	Debian 3.0 (Woody)
	Mandrake 10.0
	SuSE 9.1
	Fedora Core 2
	Conclusion

	Point-and-Click E-Mail Crypto
	Roy

Hoobler
	What Is GnuPG?
	Creating Your Own Key
	Encrypting Files
	Sending E-Mail
	Signing E-Mail
	Creating Groups/Other Options
	Summary

	Networking in NSA Security-Enhanced Linux
	James

Morris
	Overview: SELinux Roles, Types and Domains
	SELinux Network Access-Control Architecture
	Network Object Labeling
	Sockets
	Ports
	Network Interfaces
	Nodes
	Network Hooks and Permissions
	UNIX Domain Controls
	Netlink Controls
	IPv4 and IPv6 Controls
	Network Policy
	Policy
	Testing
	Future Developments
	Acknowledgement

	Encrypt Your Root Filesystem
	Mike

Petullo

	How I Feed My Cats with Linux
	Chris

McAvoy
	The BASIC Stamp Microcontroller
	Linux and the STAMP
	The Much-Maligned Serial Cable
	Python Takes Control
	Let's Feed the Kittens!

	Application Defined Processors
	Dan

Poznanovic
	What Is Reconfigurable Computing and Why Do I Care?
	How Is that High Performance Achieved?
	But Can a DEL Processor Run Linux?
	SRC Computers, Inc.'s RC System
	The DEL Processor—MAP
	Microprocessor with SNAP
	SRC-6 System-Level Architectural Implementation
	Programming Model for Reconfigurable Computing
	Open-Source Hardware Opportunity
	Code Example
	Conclusion

	Finding Stubborn Bugs with Meaningful Debug Info
	John

Goerzen
	Tracking Bugs
	Make It Easy to Submit Bugs
	Logging
	Check Input
	Handle Exceptions
	Capture Exceptions
	Finding Reported Bugs
	Preventing Bugs
	Case Study: a Bug in OfflineIMAP
	Conclusion

	Using Webmin—By the Book
	Frank Conley
	Exploring the Modules
	From Simple to Complex

	Counting with uniq
	Brian Tanaka
	A Simple Example
	A More-Advanced Example
	Conclusion

	A Memory-Efficient Doubly Linked List
	Prokash Sinha
	Node Definition
	Traversal
	Insertion
	Deletion
	Use of Memory and Time
	Conclusion

	At the Forge: Bloglines Web Services
	Reuven
 M.
Lerner
	What Is a Web Service, Anyway?
	Presenting the Bloglines API
	Notifier API
	Blogroll API
	Conclusion

	Kernel Korner: The Linux Test Project
	Nigel

Hinds
	The Test Suite
	Executing the Test Suite
	Automation Tools
	Expanding the Test Suite with Coverage Analysis
	Conclusion

	Cooking with Linux: Forgotten Security
	Marcel Gagné

	Paranoid Penguin: Taking a Risk-Based Approach to Linux Security
	Mick Bauer
	The Risk-Based Approach to Security
	Vulnerabilities and Threats
	Defense Scenario One: Firewall Policies
	Defense Scenario Two: Application Security
	Conclusion

	Linux for Suits: Grass Roots vs. Giant Roars
	Doc

Searls

	EOF: 441 Reasons to Go Linux
	Brooke

Partridge

	Network Security Hacks—100 Industrial-Strength Tips &
Tools
by Andrew Lockhart
	Alex Weeks

	HP Compaq nx5000
	Don Marti
	Hardware Support
	Devices
	Support

	Open Source Licensing: Software Freedom and Intellectual
Property Law by Lawrence Rosen
	Don Marti

	From the Editor: January 2005 - Security on the Go
	Don Marti

	Letters
	Cliché Busters
	Good Articles in October
	Choice in Fortran Compilers
	Portugal, Land of Fine Wine
	Photo of the Month: Vin de Pingouin
	Hosting Provider Supports SCO
	Security Advice
	Less Clustering, More USB
	Penguin Cake for Web Class
	Sweden.population++;
	Conference on Non-Linux Web Server?

	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	BZFlag: www.bzflag.org
	Don Marti

	Devil's Pie: www.burtonini.com/blog/computers/devilspie
	Don Marti

	LJ Index—January 2005
	On the Web
	Ten Years Ago in LJ: January 1995
	They Said It

	Best of Technical Support
	Distributing /etc/shadow
	How to Pass an Option to the Kernel?
	Testing CPU under Different Loads
	Single-User Mode
	Luke 5:37–38
	Setting Serial Ports for USB-to-Serial Adapters
	Setting Compiler Options for Gentoo
	Fedora Install Hangs
	Faking Out the Oracle Installer

	New Products
	RTLinuxPro 2.1
	ACCPAC Advantage Series Version 5.3
	SuSE Linux Professional 9.2
	Yellow Dog Linux 4.0
	Sugar Sales 2.0

